- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )
A.2人 | B.3人 | C.4人 | D.5人 |
甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同.现了解到以下情况:(1)甲不是最高的;(2)最高的没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步;可以判断丙参加的比赛项目是( )
A.跑步比赛 | B.跳远比赛 | C.铅球比赛 | D.无法判断 |
《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:
.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:
圆面积
矢
.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000
,建筑容积约为340000
,估计体育馆建筑高度(单位:
)所在区间为( )
参考数据:
,
,
,
,
.








参考数据:








A.![]() | B.![]() | C.![]() | D.![]() |
某医务人员说:“包括我在内,我们社区诊所医生和护士共有16名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护士;至少有一名男医生.”请你推断说话的人的性别与职业是( )
A.男医生 | B.女医生 | C.男护士 | D.女护士 |
意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8……该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列
称为“斐波那契数列”,则
______.


学校艺术节对同一类的
,
,
,
四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“
或
作品获得一等奖”; 乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”; 丁说:“
作品获得一等奖”.
若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______ .




甲说:“



丙说:“



若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是
某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,如表下为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳远(单位:米) | 1.92 | 1.96 | 1.78 | 1.76 | 1.74 | 1.72 | 1.80 | 1.82 | 1.68 | 1.60 |
30秒跳绳(单位:次) | 63 | ![]() | 75 | 60 | 63 | 72 | 70 | ![]() | b | 65 |
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )
A.2号学生进入30秒跳绳决赛 | B.5号学生进入30秒跳绳决赛 |
C.8号学生进入30秒跳绳决赛 | D.9号学生进入30秒跳绳决赛 |
2019年4月20日,重庆市实施高考改革方案,2018年秋季入学的高中一年级的学生将实行“
”模式.即“3”为全国统考科目语文、数学、外语所有学生必考;“1”为物理、历史科目中选择一科俗称“2选1”;“2”为再选学科,考生可在化学、生物、思想政治、地理4个科目中选择两科俗称“4选2”,选择学科完全相同即为相同“组合”.某校高一年级有三名同学甲,乙,丙根据自己喜欢的大学和专业情况均选择了物理,为了了解“4选2”选科情况老师找这三名同学来谈话情况如下:
甲说:我选了化学,但没有选思想政治;
乙说:我与甲有一科相同,但没有选化学和地理;
丙说:我与甲有相同的选科,与乙也有相同选科,但我们三个选的“组合”都不相同.则下列结论正确的是( )

甲说:我选了化学,但没有选思想政治;
乙说:我与甲有一科相同,但没有选化学和地理;
丙说:我与甲有相同的选科,与乙也有相同选科,但我们三个选的“组合”都不相同.则下列结论正确的是( )
A.甲选了化学和地理 | B.丙可能选化学和思想政治 |
C.甲一定选地理 | D.丙一定选了生物和地理 |