- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的方差
- 超几何分布的方差
- + 二项分布的方差
- 方差的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为
,求
的分布列和数学期望
及方差
.
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为




下列说法中错误的是( )
A.在分层抽样中也可能用到简单随机抽样与系统抽样; |
B.从茎叶图中可以看到原始数据,没有任何信息损失; |
C.若两个随机变量的线性相关性越强,则相关系数![]() |
D.若随机变量![]() ![]() ![]() ![]() ![]() |
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在
地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中
.

(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(Ⅱ)若按照分层抽样从
,
中随机抽取8人,再从这8人中随机抽取4人,记分数在
的人数为
,求
的分布列与数学期望;
(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取
人作调查,记成绩在
,
的人数为
,若
,求
的最大值.



(Ⅰ)估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(Ⅱ)若按照分层抽样从





(Ⅲ)以频率估计概率,若该研究人员从全国国企员工中随机抽取






一批排球中正品有m个,次品有n个,
,从这批排球中每次随机 取一个,有放回地抽取10次,X表示抽到的次品个数若
,从这批排球中随机一次取两个,则至少有一个次品的概率p=___________


以下是新兵训练时,某炮兵连
周中炮弹对同一目标的命中的情况的柱状图:

(1)计算该炮兵连这
周中总的命中频率
,并确定第几周的命中频率最高;
(2)以(1)中的
作为该炮兵连甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射
次,记命中的次数为
,求
的方差;
(3)以(1)中的
作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过
(取
)


(1)计算该炮兵连这


(2)以(1)中的




(3)以(1)中的


