- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的方差
- 超几何分布的方差
- + 二项分布的方差
- 方差的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某导弹发射的事故率为0.001,若发射10次,记出事故的次数为
,则
( )


A.0.0999 | B.0.001 | C.0.01 | D.0.00999 |
《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为
、
、
、
、
、
、
、
共8个等级.参照正态分布原则,确定各等级人数所占比例分别为
、
、
、
、
、
、
、
.选考科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则,分别转换到
、
、
、
、
、
、
、
八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
.
(1)求物理原始成绩在区间
的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记
表示这3人中等级成绩在区间
的人数,求
的分布列和数学期望.
(附:若随机变量
,则
,
,
)



























(1)求物理原始成绩在区间

(2)按高考改革方案,若从全省考生中随机抽取3人,记



(附:若随机变量




某班4名同学参加数学测试,每人通过测试的概率均为
,且彼此相互独立,若X为4名同学通过测试的人数,则D(X)的值为()

A.1 | B.2 | C.3 | D.4 |
为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了
人进行分析,得到如下列联表(单位:人).
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为
市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的
岁以上的网友中,采用分层抽样的方法选取
人,再从这
人中随机选出
人赠送优惠券,求选出的
人中至少有
人经常使用共享单车的概率;
(ii)将频率视为概率,从
市所有参与调查的网友中随机选取
人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:


| 经常使用 | 偶尔使用或不使用 | 合计 |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)根据以上数据,能否在犯错误的概率不超过


(2)(i)现从所选取的






(ii)将频率视为概率,从




参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |