XB(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为(  )
A.3×22B.24C.3×210D.28
当前题号:1 | 题型:单选题 | 难度:0.99
设随机变量服从二项分布,且期望,其中,则方差=______.
当前题号:2 | 题型:填空题 | 难度:0.99
已知随机变量,若,则随机变量的均值及方差分别为(   )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是______;若变量为取出3个球中红球的个数,则的方差______.
当前题号:4 | 题型:填空题 | 难度:0.99
2017年11月河南省三门峡市成功入围“十佳魅力中国城市”,吸引了大批投资商的目光,一些投资商积极准备投入到“魅力城市”的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.
项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为,若盈利则盈利投资额的40%,否则盈利额为0.
项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p.
(1)若投资项目一,记为盈利的天坑院的个数,求(用p表示);
(2)若投资项目二,记投资项目二的盈利为百万元,求(用p表示);
(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
已知离散型随机变量满足二项分布且,则当内增大时,(   )
A.减小B.增大
C.先减小后增大D.先增大后减小
当前题号:6 | 题型:单选题 | 难度:0.99
已知,则的值依次为(   ).
A.3,2B.2,3C.6,2D.2,6
当前题号:7 | 题型:单选题 | 难度:0.99
随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
 
经常网购
偶尔或不用网购
合计
男性
50
 
100
女性
70
 
100
合计
 
 
 
 
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
某射手射击一次击中靶心的概率是,如果他在同样的条件下连续射击10次,设射手击中靶心的次数为,若,,则(    )
A.0.7B.0.6C.0.4D.0.3
当前题号:9 | 题型:单选题 | 难度:0.99
在新中国成立七十周年之际,赤峰市某中学的数学课题研究小组,在某一个社区设计了一个调查:在每天晚上7:30~10:00共2.5小时内,居民浏览“学习强国”的时间.如果这个社区共有成人按10000人计算,每人每天晚上7:30~10:00期间打开“学习强国APP”的概率均为(某人在某一时刻打开“学习强国”的概率,),并且是否打开进行学习是彼此相互独立的.他们统计了其中100名成人每天晚上浏览“学习强国”的时间(单位:min),得到下面的频数表,以样本中100名成人的平均学习时间作为该社区每个人的学习时间.
学习时长/min





频数
10
20
40
20
10
 
(1)试估计的值;
(2)设表示这个社区每天晚上打开“学习强国”进行学习的人数.
①求的数学期望和方差;
②若随机变量满足,可认为.假设当时,表示社区处于最佳的学习氛围,试由此估计,该社区每天晚上处于最佳学习氛围的时间长度(结果保留为整数).
附:若,则,,.
当前题号:10 | 题型:解答题 | 难度:0.99