2016年1月1日起全国统一实施全面的两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后80后作为调查对象,随机调查了100人并对调查结果进行统计,70后不打算生二胎的占全部调查人数的,80后打算生二胎的占全部被调查人数的,100人中共有75人打算生二胎.
(1)根据调查数据,判断是否有以上把握认为“生二胎与年龄有关”,并说明理由;
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中打算生二胎的人数为,求随机变量的分布列,数学期望和方差.
参考公式:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
,其中
当前题号:1 | 题型:解答题 | 难度:0.99
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.

(Ⅰ)用样本估计总体,某班有学生45人,设为达标人数,求的数学期望与方差;
性别是否达标


合计
达标


 
不达标


 
合计
 
 

 
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
根据表中所给的数据,能否有的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
















 
附:.
当前题号:2 | 题型:解答题 | 难度:0.99
近年来我国电子商务行业迎来发展的新机遇,2017年双11全天交易额达到1682亿元,为规范和评估该行业的情况,相关管理部门制定出针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行评价,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)完成关于商品和服务评价的列联表,判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量
①求对商品和服务全为好评的次数的分布列;
②求的数学期望和方差.
附:临界值表:

的观测值:(其中
关于商品和服务评价的列联表:
当前题号:3 | 题型:解答题 | 难度:0.99
心理学家发现视觉和空间能力与性别有关,孝感市黄陂路高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为,求的数学期望和方差.
附表:

参考公式:,其中.
当前题号:4 | 题型:解答题 | 难度:0.99
2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?
 
有兴趣
没兴趣
合计

 
 
55

 
 
 
合计
 
 
 
 
(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附表:

0.150
0.100
0.050
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
当前题号:5 | 题型:解答题 | 难度:0.99
北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格1:4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

 
非围棋迷
围棋迷
合计

 
 
 

 
10
55
合计
 
 
 
 
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望 E(X) 和方差 D(X) .
当前题号:6 | 题型:解答题 | 难度:0.99
2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附表:
当前题号:7 | 题型:解答题 | 难度:0.99
随着移动支付的普及,中国人的生活方式正悄然巨变,带智能手机,不带钱包出门还渐成为中国人的新习惯年我国移动支付增长迅猛,据统计,某支付平台2017年移动支付的笔数占总支付笔数的
从该支付平台2017年的所有支付中任取10笔,求移动支付笔数的期望和方差;
现有500名使用该支付平台的用户,其中300名是城市用户,200名是农村用户,调查他们2017年个人移动支付的比例是否达到了,得到列联表如下:
 
个人移动支付达到了
个人移动支付达到了
合计
城市用户
270
30
300
农村用户
170
30
200
合计
440
60
500
 
根据上表数据,问是否有的把握认为2017年个人移动支付比例达到了与该用户是城市用户还是农村用户有关?
附:



k


 
当前题号:8 | 题型:解答题 | 难度:0.99
(2018届呼和浩特市高三年级第一次质量普查考试)为了了解校园噪音情况,学校环保协会对校园噪音值(单位:分贝)进行了天的监测,得到如下统计表:
噪音值(单位:分贝)






频数






 
(1)根据该统计表,求这天校园噪音值的样本平均数(同一组的数据用该组的中点值作代表).
(2)根据国家声环境质量标准:“环境噪音值超过分贝,视为重度噪音污染;环境噪音值不超过分贝,视为轻度噪音污染.”如果把由上述统计表算得的频率视作概率,回答下列问题:
(i)求周一到周五的五天中恰有两天校园出现重度噪音污染而其余三天都是轻度噪音污染的概率.
(ii)学校要举行为期天的“汉字听写大赛”校园选拔赛,把这天校园出现的重度噪音污染天数记为,求的分布列和方差.
当前题号:9 | 题型:解答题 | 难度:0.99
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的数学期望和方差.
当前题号:10 | 题型:解答题 | 难度:0.99