- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的方差
- 超几何分布的方差
- + 二项分布的方差
- 方差的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为调查某小区居民的“幸福度”.现从所有居民中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”.

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记
表示抽到“幸福”的人数,求
的分布列及数学期望和方差.

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记


甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性较大?

(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性较大?
山西省2021年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分。根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为
共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到
八个分数区间,得到考生的等级成绩。举例说明1:甲同学化学学科原始分为65分,化学学科
等级的原始分分布区间为
,则该同学化学学科的原始成绩属
等级,而
等级的转换分区间为
那么,甲同学化学学科的转换分为:设甲同学化学科的转换等级分为
,求得
.四舍五入后甲同学化学学科赋分成绩为66分。举例说明2:乙同学化学学科原始分为69分,化学学科
等级的原始分分布区间为
则该同学化学学科的原始成绩属
等级.而
等级的转换分区间为
这时不用公式,乙同学化学学科赋分成绩直接取下端点70分。现有复兴中学高一年级共3000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
。且等级为
所在原始分分布区间为
,且等级为
所在原始分分布区间为
,且等级为
所在原始分分布区间为
(1)若小明同学在这次考试中物理原始分为84分,小红同学在这次考试中物理原始分为72分,求小明和小红的物理学科赋分成绩;(精确到整数).
(2)若以复兴中学此次考试频率为依据,在学校随机抽取4人,记
这4人中物理原始成绩在区间
的人数,求
的数学期望和方差.(精确到小数点后三位数).
附:若随机变量满足正态分布,给出以下数据
,






















(1)若小明同学在这次考试中物理原始分为84分,小红同学在这次考试中物理原始分为72分,求小明和小红的物理学科赋分成绩;(精确到整数).
(2)若以复兴中学此次考试频率为依据,在学校随机抽取4人,记



附:若随机变量满足正态分布,给出以下数据
