- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- + 二项分布的均值
- 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在合作学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担
,
,
,
四项不同的任务,每个同学只能承担一项任务.
(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;
(2)设这五位同学中承担任务
的人数为随机变量
,求
的分布列及数学期望
.




(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;
(2)设这五位同学中承担任务




《河北省高考改革实施方案》规定:从2018年秋季高中入学的新生开始,不分文理科,2021年开始,高考总成绩由语数外3门必考科目和物理、化学等六门选考科目自主选择三门构成.最终将每门选考科目的考生原始成绩按照等级赋分规则纳入高考录取总成绩,成绩呈现方式按照一定比例分为A,B,C,D,E五个等级.参照正态分布原则,确定各等级人数所占比例分别为
选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到
五个分数区间,得到考生的等级成绩。某校高一年级学生共1000人,为给高一学生合理选科提供依据,对六个选考科目进行一次测试,其中地理考试原始成绩基本服从正态分布
.
(I)求地理原始成绩在区间
的人数;
(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间
的人数,求X的分布列和数学期望。
(附:若随机变量
,则
,



(I)求地理原始成绩在区间

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间

(附:若随机变量



假设濮阳市市民使用移动支付的概率都为
,且每位市民使用支付方式都是相互独立的,已知
是其中10位市民使用移动支付的人数,且
,则
的值为( )




A.0.4 | B.0.5 | C.0.6 | D.0.8 |
随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到如表(单位:人):
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为
市使用共享单车情况与年龄有关?
(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.
②将频率视为概率,从
市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:

| 经常使用 | 偶尔或不用 | 合计 |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为

(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.
②将频率视为概率,从



参考公式:


参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
出租车司机从南昌二中新校区到老校区(苏圃路)途中有
个交通岗,假设他在各交通岗遇到红灯是相互独立的,并且概率都是
则这位司机在途中遇到红灯数
的期望为____ .(用分数表示)



某工厂的某车间共有
位工人,其中
的人爱好运动。经体检调查,这
位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于
者为“身体状况好”,健康指数低于
者为“身体状况一般”。

(1)根据以上资料完成下面的
列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?
(2)现将
位工人的健康指数分为如下
组:
,
,
,
,
,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为
,由频率分布直方图得到估计值记为
,求
与
的误差值;
(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于
者中任选
人,设
表示爱好运动的人数,求
的数学期望。
附:
。






(1)根据以上资料完成下面的

| 身体状况好 | 身体状况一般 | 总计 |
爱好运动 | | | |
不爱好运动 | | | |
总计 | | | ![]() |
(2)现将











(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于




附:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示:
(1)能否据此判断有
的把握认为选代数题还是几何题与性别有关?
(2)用以上列联表中女生选做几何题的频率作为概率,从该校所有女生(该校女生超过1200人)中随机选5名女生,记5名女生选做几何题的人数为
,求
的数学期望
和方差
.
附表:
参考公式:
,其中
.
| 几何题 | 代数题 | 合计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
(1)能否据此判断有

(2)用以上列联表中女生选做几何题的频率作为概率,从该校所有女生(该校女生超过1200人)中随机选5名女生,记5名女生选做几何题的人数为




附表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:

