- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- + 二项分布的均值
- 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:
),经统计其增长长度均在区间
内,将其按
,
,
,
,
,
分成6组,制成频率分布直方图,如图所示其中增长长度为
及以上的产品为优质产品.

(1)求图中
的值;
(2)已知这120件产品来自于
,B两个试验区,部分数据如下列联表:

将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;
下面的临界值表仅供参考:

(参考公式:
,其中
)
(3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数
的分布列和数学期望E(X).










(1)求图中

(2)已知这120件产品来自于


将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;
下面的临界值表仅供参考:

(参考公式:


(3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数

为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了
人进行分析,得到如下列联表(单位:人).
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为
市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的
岁以上的网友中,采用分层抽样的方法选取
人,再从这
人中随机选出
人赠送优惠券,求选出的
人中至少有
人经常使用共享单车的概率;
(ii)将频率视为概率,从
市所有参与调查的网友中随机选取
人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:


| 经常使用 | 偶尔使用或不使用 | 合计 |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)根据以上数据,能否在犯错误的概率不超过


(2)(i)现从所选取的






(ii)将频率视为概率,从




参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为了研究家用轿车在高速公路上的速情况,交通部门对
名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在
名男性驾驶员中,平均车速超过
的有
人,不超过
的有
人.在
名女性驾驶员中,平均车速超过
的有
人,不超过
的有
人.
(1)完成下面的列联表,并判断是否有
的把握认为平均车速超过
与性别有关,(结果保留小数点后三位)
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取
辆,若每次抽取的结果是相互独立的,问这
辆车中平均有多少辆车中驾驶员为男性且车速超过
?
附:
(其中
为样本容量)











(1)完成下面的列联表,并判断是否有


| 平均车速超过![]() | 平均车速不超过![]() | 合计 |
男性驾驶员人数 | | | |
女性驾驶员人数 | | | |
合计 | | | |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取



附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售情况的某项指标统计:

(I)求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;
(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为
,求
的分布列及数学期望

(I)求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;
(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为


甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性较大?

(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性较大?