支付宝自助付款可以实现人像识别身份认证和自动支付业务,于是出现了无人超市.无人超市的出现大大方便了顾客,也为商家节约了人工成本.某超市对随机进入无人超市的100名顾客的付款时间与购物金额进行了统计,统计数据如图所示:(时间单位:秒,付款金额RMB:元)

(1)用统计中的频率代表一位顾客随机进店消费付款时间的概率,试求该顾客进店购物结算时所用时间的期望;
(2)若一位顾客在结算时,前面恰有3个人正在排队,求该顾客等候时间不少于2分钟的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
2018年4月4日召开的国务院常务会议明确将进一步推动网络提速降费工作落实,推动我国数字经济发展和信息消费,今年移动流量资费将再降以上,为响应国家政策,某通讯商计划推出两款优惠流量套餐,详情如下:
套餐名称
月套餐费/元
月套餐流量/M
A
30
3000
B
50
6000
 
这两款套餐均有以下附加条款:套餐费用月初一次性收取,手机使用流量一旦超出套餐流量,系统就会自动帮用户充值流量,资费20元;如果又超出充值流量,系统再次自动帮用户充值流量,资费20元,以此类推.此外,若当月流量有剩余,系统将自动清零,不可次月使用.
小张过去50个月的手机月使用流量(单位:M)的频数分布表如下:
月使用流量分组






频数
4
5
11
16
12
2
 
根据小张过去50个月的手机月使用流量情况,回答以下几个问题:
(1)若小张选择A套餐,将以上频率作为概率,求小张在某一个月流量费用超过50元的概率;
(2)小张拟从A或B套餐中选定一款,若以月平均费用作为决策依据,他应订哪一种套餐?说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
某中超足球队的后卫线上一共有7名球员,其中3人只能打中后卫,2人只能打边后卫,2人既能打中后卫又能打边后卫,主教练决定选派4名后卫上场比赛,假设可以随机选派球员.
(1)在选派的4人中至少有2人能打边后卫的概率;
(2)在选派的4人中既能打中后卫又能打边后卫的人数的分布列与期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某地拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家计了一个招标方案:两家公司从6个招标问题中随机抛取3个问题,已知这6个问中,甲公司可正确回答其中的4道题,而乙公司能正确回答每道题目的概率均为,且甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(I)求甲、乙两家公司共答对2道题的概率;
(II)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
为了保证食品的安全卫生,食品监督管理部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).规定:当食品中的有害微量元素的含量在时为一等品,在为二等品,20以上为劣质品.

(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求抽到食品甲包含劣质品的概率和抽到食品乙全是一等品的概率;
(2)在概率和统计学中,数学期望(或均值)是基本的统计概念,它反映随机变量取值的平均水平.变量的一切可能的取值与对应的概率乘积之和称为该变量的数学期望,记为.
参考公式:变量的取值为对应取值的概率,可理解为数据出现的频率
.
①每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、 二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,求这两件食品各自能给该厂 带来的盈利期望.
②若生产食品甲初期需要一次性投入10万元,生产食品乙初期需要一次性投人16 万元,但是以目前企业的状况,甲乙两条生产线只能投资其中一条.如果你是该食品厂负责人,以一年为期限,盈利为参照,请给出合理的投资方案.
当前题号:5 | 题型:解答题 | 难度:0.99
甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(1)求乙得分的分布列和数学期望;
(2)求甲、乙两人中至少有一人入选的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4
的4个白球,从中任意取出3个球.
(1)求取出的3个球颜色相同且编号是三个连续整数的概率;
(2)求取出的3个球中恰有2个球编号相同的概率;
(3)设X为取出的3个球中编号的最大值,求X的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
选修4-4:坐标系与参数方程
元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种.方案一:每满
元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次从装有个幸运号、个吉祥号的一号摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打 折,若摇出个幸运号则打 折;若摇出个幸运号则打折;若没摇出幸运号则不打折.
(1)若某型号的车正好万元,两个顾客都选择第二种方案,求至少有一名顾客比选择方案一更优惠的概率;
(2)若你朋友看中了一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.
当前题号:8 | 题型:解答题 | 难度:0.99
有一款击鼓小游戏规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得50分,没有出现音乐则扣除150分(即获得-150分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(Ⅰ)玩一盘游戏,至少出现一次音乐的概率是多少?
(Ⅱ)设每盘游戏获得的分数为,求的分布列;
(Ⅲ)许多玩过这款游戏的人都发现,玩的盘数越多,分数没有增加反而减少了.请运用概率统计的相关知识分析其中的道理.
当前题号:9 | 题型:解答题 | 难度:0.99
甲、乙、丙人投篮,投进的概率分别是.
(1)现人各投篮次,求人至少一人投进的概率;
(2)用表示乙投篮次的进球数,求随机变量的概率分布及数学期望和方差.
当前题号:10 | 题型:解答题 | 难度:0.99