某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求的分布列及数学期望..
当前题号:1 | 题型:解答题 | 难度:0.99
汽车是碳排放量比较大的交通工具,某地规定,从2017年开始,将对二氧化碳排放量超过130 g/km的轻型汽车进行惩罚性征税,检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km):

80
110
120
140
150

100
120
x
100
160
 
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为=120 g/km.
(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;
(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130 g/km的概率是多少?
当前题号:2 | 题型:解答题 | 难度:0.99
在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题个数记为,求随机变量的分布列和期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别
选考方案确定情况
物理
化学
生物
历史
地理
政治
男生
选考方案确定的有8人
8
8
4
2
1
1
选考方案待确定的有6人
4
3
0
1
0
0
女生
选考方案确定的有10人
8
9
6
3
3
1
选考方案待确定的有6人
5
4
1
0
0
1
 
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;
(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量两名男生选考方案相同时,两名男生选考方案不同时,求的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
将4名大学生随机安排到A,B,C,D四个公司实习. 
(1)求4名大学生恰好在四个不同公司的概率;
(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).
当前题号:5 | 题型:解答题 | 难度:0.99
某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);
(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:
四惠
 
3
3
3
3
4
4
4
5
5
5
5
5
四惠东
 
 
3
3
3
4
4
4
5
5
5
5
5
高碑店
 
 
 
3
3
3
4
4
4
4
5
5
5
传媒大学
 
 
 
 
3
3
3
4
4
4
4
5
5
双桥
 
 
 
 
 
3
3
3
4
4
4
4
4
管庄
 
 
 
 
 
 
3
3
3
3
4
4
4
八里桥
 
 
 
 
 
 
 
3
3
3
3
4
4
通州北苑
 
 
 
 
 
 
 
 
3
3
3
3
3
果园
 
 
 
 
 
 
 
 
 
3
3
3
3
九棵树
 
 
 
 
 
 
 
 
 
 
3
3
3
梨园
 
 
 
 
 
 
 
 
 
 
 
3
3
临河里
 
 
 
 
 
 
 
 
 
 
 
 
3
土桥
 
 
 
 
 
 
 
 
 
 
 
 
 
 
四惠
四惠东
高碑店
传媒大学
双桥
管庄
八里桥
通州北苑
果园
九棵树
梨园
临河里
土桥
 
(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;
(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;
(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较的方差大小.(结论不需要证明)
当前题号:7 | 题型:解答题 | 难度:0.99
4月23日是“世界读书日”,天津市某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取10名学生参加问卷调查.各组人数统计如下:
小组




人数
12
16
8
4
 
(1)从参加问卷调查的10名学生中随机抽取2人,求这2人来自同一个小组的概率;
(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
现有6人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,主办方制作了一款电脑软件:按下电脑键盘“”键则会出现模拟抛两枚质地均匀的骰子的画面,若干秒后在屏幕上出现两个点数,并在屏幕的下方计算出的值.主办方现规定:每个人去按“”键,当显示出来的小于时则参加甲游戏,否则参加乙游戏.
(1)求这6个人中恰有2人参加甲游戏的概率;
(2)用分别表示这6个人中去参加甲,乙游戏的人数,记,求随机变量的分布列与数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99