(本小题满分12分)某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:
年龄(岁)
[10,20)
[20,30)
[30,40)
[40,50)
[50,60)
[60,70]
频数
m
n
15
10
7
3
知道的人数
4
6
12
6
3
2
 
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
(Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为,求随机变量的分布列和数学期望.
当前题号:1 | 题型:填空题 | 难度:0.99
随机变量的分布列如下表所示,其中,,成等差数列,若,则的值是___________.








 
当前题号:2 | 题型:填空题 | 难度:0.99
是从集合中随机抽取的一个元素,记随机变量,则的数学期望________________.
当前题号:3 | 题型:填空题 | 难度:0.99
一个袋子中有7个除颜色外完全相同的小球,其中5个红色,2个黑色.从袋中随机地取出3个小球.其中取到黑球的个数为,则 (结果用最简分数作答).
当前题号:4 | 题型:填空题 | 难度:0.99
(本小题满分12分)某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.

(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望
当前题号:5 | 题型:解答题 | 难度:0.99
学生的学习能力参数可有效衡量学生的综合能力,越大,综合能力越强,为推动数学知识的发展,提高学生的综合能力.某校根据学生的学习能力参数将参加数学竞赛小组的学生分成了如下三类:
学习能力参数
学习能力参数



学生人数(人)
15
10

 
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了人,根据其学习能力参数,作出了频率与频数的统计表:
分组
频数(人)
频率

3
 




 

合计


 
(1)求的值
(2)规定:学习能力参数不少于70称为优秀.若从这人中任选人,记抽到到的优秀人数为随机变量,求的分布列和数学期望
当前题号:6 | 题型:解答题 | 难度:0.99
(本题满分12分)某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立.
(1)求m,n;
(2)设X为该同学取得优秀成绩的课程门数,求EX.
当前题号:7 | 题型:解答题 | 难度:0.99
(本小题满分12分)甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为,乙与丙击中目标的概率分别为 ,每人是否击中目标是相互独立的.记目标被击中的次数为,且的分布列如下表:

(Ⅰ)求的值;
(Ⅱ)求的数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ)用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
(本小题满分12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:

(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
①求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99