某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
 
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数(千册)
2
3
4
5
8
单册成本(元)
3.2
2.4
2
1.9
1.7
模型甲
估计值
 
2.4
2.1
 
1.6
残差
 
0
-0.1
 
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
当前题号:1 | 题型:解答题 | 难度:0.99
为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:

某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

(1)求的值;
(2)若从这辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为(单位:万元),求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:

 
网购达人
非网购达人
合计
男性
 
 
30
女性
12
 
30
合计
 
 
60
 
若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.

(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?

(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.

(参考公式:,其中
P()
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:

(1)求申通公司的快递员一日工资(单位:元)与送件数的函数关系;
(2)若将频率视为概率,回答下列问题:
①记圆通公司的“快递员”日工资为(单位:元),求的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
分数段
频数
选择题得分24分以上(含24分)

5
2

10
4

15
12

10
6

5
4

5
5
 
(Ⅰ)若从分数在的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为,求随机变量的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某竞猜活动有54人参加.设计者给每位参与者1道填空题和3道选择题,答对一道填空题得2分,答对一道选择题得1分,答错得0分,若得分总数大于或等于4分可获得纪念品.假定每位参与者答对每道填空题的概率为,答对每道选择题的概率为,且每位参与者答题互不影响.设参与者中可获得纪念品的人数为,则均值(数学期望)(  )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
学校设计了一个实验学科的考查方案:考生从6道备选题中一次随机抽取3道题,按照题目要求独立完成全部实验操作,并规定:在抽取的3道题中,至少正确完成其中2道题便可通过考查,已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都为,且每题正确完成与否互不影响.
(1)求考生甲正确完成题目个数的分布列和数学期望;
(2)用统计学知识分析比较甲、乙两考生哪位实验操作能力强及哪位通过考查的可能性大?
当前题号:7 | 题型:解答题 | 难度:0.99
为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄






频数
5
10
15
10
5
5
支持“生育二胎”
4
5
12
8
2
1
 
(1)由以上统计数据填下面列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;
 
年龄不低于45岁的人数
年龄低于45岁的人数
合计
支持


 
不支持


 
合计
 
 
 
 
(2)若对年龄在的被调查人中各随机选取两人进行调查,记选中的4人中不支持“生育二胎”人数为,求随机变量的分布列及数学期望.
参考数据:

0.05
0.010
0.001

3.841
6.635
10.828
 
,其中
当前题号:8 | 题型:解答题 | 难度:0.99
本着健康、低碳的生活理念,租用公共自行车的人越来越多.租用公共自行车的收费标准是每车每次不超过两小时免费,超过两小时的部分每小时2元(不足1小时的部分按1小时计算).甲乙两人相互独立租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.
(1)求出甲、乙所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量,求随机变量的概率分布和期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).

对于三类工种职工每人每年保费分别为元,元,元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业于保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)
当前题号:10 | 题型:解答题 | 难度:0.99