刷题首页
题库
高中数学
题干
是从集合
中随机抽取的一个元素,记随机变量
,则
的数学期望
________________
.
上一题
下一题
0.99难度 填空题 更新时间:2015-05-13 05:48:44
答案(点此获取答案解析)
同类题1
传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为
五个等级进行数据统计如下:
根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为
的人数;
(2)若等级
分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为
的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为
的人数
的分布列与数学期望.
同类题2
某企业2017年招聘员工,其中
五种岗位的应聘人数、录用人数和录用比例(精确到
)如下:
岗位
男性应聘人数
男性录用人数
男性录用比例
女性应聘人数
女性录用人数
女性录用比例
269
167
40
24
40
12
202
62
177
57
184
59
44
26
38
22
3
2
3
2
总计
533
264
467
169
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘
岗位的6人中随机选择2人.记
为这2人中被录用的人数,求
的分布列和数学期望;
(Ⅲ)表中
各岗位的男性、女性录用比例都接近(二者之差的绝对值不大
),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
同类题3
玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”和“三步上篮”的命中率均为
.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.
(1)求小华同学两项测试均合格的概率;
(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.
同类题4
已知
、
两个盒子中都放有
个大小相同的小球, 其中
盒子中放有
个红球,
个黑球,
盒子中放有
个红球,
个黑球.
(1)若甲从
盒子中任取一球、乙从
盒子中任取一球, 求甲、乙两人所取球的颜色不同的概率;
(2)若甲每次从
盒子中任取两球, 记下颜色后放回, 抽取两次;乙每次从
盒子中任取两球, 记下颜色后放回, 抽取两次, 在四次取球的结果中, 记两球颜色相同的次数为
,求
的分布列和数学期望.
同类题5
甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功.某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量的均值与方差
离散型随机变量的均值
求离散型随机变量的均值