刷题首页
题库
高中数学
题干
一个袋子中有7个除颜色外完全相同的小球,其中5个红色,2个黑色.从袋中随机地取出3个小球.其中取到黑球的个数为
,则
(结果用最简分数作答).
上一题
下一题
0.99难度 填空题 更新时间:2015-06-25 08:14:35
答案(点此获取答案解析)
同类题1
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按
/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第
第
次
第
次
第
次
第
次
次
收费比率
该公司注册的会员中没有消费超过
次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数
次
次
次
次
次
人数
假设汽车美容一次,公司成本为
元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为
元,求
的分布列和数学期望
.
同类题2
为了保证食品的安全卫生,食品监督管理部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).规定:当食品中的有害微量元素的含量在
时为一等品,在
为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求抽到食品甲包含劣质品的概率和抽到食品乙全是一等品的概率;
(2)在概率和统计学中,数学期望(或均值)是基本的统计概念,它反映随机变量取值的平均水平.变量的一切可能的取值
与对应的概率
乘积之和称为该变量的数学期望,记为
.
参考公式:变量
的取值为
,
对应取值的概率
,可理解为数据
出现的频率
,
.
①每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、 二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,求这两件食品各自能给该厂 带来的盈利期望
.
②若生产食品甲初期需要一次性投入10万元,生产食品乙初期需要一次性投人16 万元,但是以目前企业的状况,甲乙两条生产线只能投资其中一条.如果你是该食品厂负责人,以一年为期限,盈利为参照,请给出合理的投资方案.
同类题3
已知甲乙两个盒内均装有大小相同、颜色不同的球若干,甲有1个红球和
个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(1)若取出的4个球均为黑球的概率为
,求
的值;
(2)在(1)的条件下,设
为取出的4个球中红球的个数,求
得分布列和数学期望.
同类题4
符合下列三个条件之一,某名牌大学就可录取:
①获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);
②自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);
③高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线).
某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件②、条件③的顺序依次参加考试.
已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3.
(I)求这名同学参加考试次数
的分布列及数学期望;
(II)求这名同学被该大学录取的概率.
同类题5
甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为
,乙在每局中获胜的概率为
,且各局胜负相互独立,比赛停止时一共已打
局, 则
的期望值
______.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量的均值与方差
离散型随机变量的均值
求离散型随机变量的均值