- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为
五个等级进行数据统计如下:

根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为
的人数;
(2)若等级
分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为
的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为
的人数
的分布列与数学期望.


根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为

(2)若等级

(3)为更深入了解教学情况,将成绩等级为



近几年电子商务蓬勃发展,在2017年的“年货节”期间,一网络购物平台推销了
三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了
三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对
三种商品的抢购成功的概率分别为
,已知三件商品都被抢购成功的概率为
,至少有一件商品被抢购成功的概率为
.
(1)求
的值;
(2)若购物平台准备对抢购成功的
三件商品进行优惠减免活动,
商品抢购成功减免
百元,
商品抢购成功减免
百元,
商品抢购成功减免
百元,求该名网购者获得减免的总金额(单位:百元)的分布列和数学期望.






(1)求

(2)若购物平台准备对抢购成功的







春节来临,有农民工兄弟
、
、
、
四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若
、
、
、
获得火车票的概率分别是
,其中
,又
成等比数列,且
、
两人恰好有一人获得火车票的概率是
.
(1)求
的值;
(2)若
、
是一家人且两人都获得火车票才一起回家,否则两人都不回家.设
表示
、
、
、
能够回家过年的人数,求
的分布列和期望
.














(1)求

(2)若









某市对贫困家庭自主创业给予小额贷款补贴,每户贷款额为
万元,贷款期限有
个月、
个月、
个月、
个月、
个月五种,这五种贷款期限政府分别需要补助
元、
元、
元、
元、
元,从
年享受此项政策的困难户中抽取了
户进行了调查统计,选取贷款期限的频数如下表:
以商标各种贷款期限的频率作为
年贫困家庭选择各种贷款期限的概率.
(1)某小区
年共有
户准备享受此项政策,计算其中恰有两户选择贷款期限为
个月的概率;
(2)设给享受此项政策的某困难户补贴为
元,写出
的分布列,若预计
年全市有
万户享受此项政策,估计
年该市共要补贴多少万元.













贷款期限 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
以商标各种贷款期限的频率作为

(1)某小区



(2)设给享受此项政策的某困难户补贴为





在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告诉大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;
(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.若主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为
,求
的分布列及数学期望.

(1)求乙班总分超过甲班的概率;
(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.若主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为


在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只须在其中选做一题,现有甲、乙、丙、丁4名考生参加考试,其中甲、乙选做第22题的概率均为
,丙、丁选做第22题的概率均为
.
(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望.


(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望.
有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为
,小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.
(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;
(2)若用
表示小华抛得正面的个数,求
的分布列和数学期望.

(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;
(2)若用


中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在
岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:


(1)由以上统计数据填
列联表,并判断是否95%的把握认为以
岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

(2)若以
岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取
人参加某项活动,现从这
人中随机抽
人.
①抽到
人是
岁以下时,求抽到的另一人是
岁以上的概率;
②记抽到
岁以上的人数为
,求随机变量
的分布列及数学期望.




(1)由以上统计数据填



(2)若以




①抽到



②记抽到



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
