- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数分分布列与期望.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数分分布列与期望.
如图,
两点有
条连线并联,它们在单位时间内能通过的信息量依次为
,现从中任取三条线且记在单位时间内通过的信息总量为
.
(I)写出信息总量
的分布列;
(II)求信息总量
的数学期望.




(I)写出信息总量

(II)求信息总量


体育课进行篮球投篮达标测试.规定:每位同学有5次投篮机会,若投中3次则“达标”;为节省时间,同时规定:若投篮不到5次已达标,则停止投篮;若即便后面投篮全中,也不能达标(前3次投中0次)则也停止投篮.同学甲投篮命中率是
,且每次投篮互不影响.
(1)求同学甲测试达标的概率;
(2)设测试同学甲投篮次数记为
,求
的分布列及数学期望
.

(1)求同学甲测试达标的概率;
(2)设测试同学甲投篮次数记为



为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:
为了更进一步了解志愿者的,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率;
(2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用
表示抽得甲班志愿者的人数,求
的分布列和数学期望.
班级 | 甲 | 乙 | 丙 | 丁 |
志愿者人数 | 45 | 60 | 30 | 15 |
为了更进一步了解志愿者的,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率;
(2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用


甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.
(1)求甲同学未选中E高校且乙、丙都选中E高校的概率;
(2)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.
(1)求甲同学未选中E高校且乙、丙都选中E高校的概率;
(2)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.
(本小题满分12分)在
年
月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“
分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取
名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).

(1)若幸福度不低于
分,则称该人的幸福度为“极幸福”,求从这
人中随机选取
人,至
多有
人是“极幸福”的概率;
(2)以这
人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选
人,记
表示抽到“极幸福”的人数,求
的分布列及数学期望.





(1)若幸福度不低于



多有

(2)以这



表示抽到“极幸福”的人数,求

惠州市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为
,求
的分布列和数学期望;
(2)已知第一次训练时用过的球放回后都当作旧球,求第二次训练时恰好取到
个新球的概率.
参考公式:互斥事件加法公式:
(事件
与事件
互斥).
独立事件乘法公式:
(事件
与事件
相互独立).
条件概率公式:
.
(1)设第一次训练时取到的新球个数为


(2)已知第一次训练时用过的球放回后都当作旧球,求第二次训练时恰好取到

参考公式:互斥事件加法公式:



独立事件乘法公式:



条件概率公式:

(本小题共12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得
分,负者得
分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(Ⅰ)求
的值;
(Ⅱ)设
表示比赛停止时比赛的局数,求随机变量
的分布列和数学期望
.
甲,乙两人进行乒乓球比赛,约定每局胜者得






(Ⅰ)求

(Ⅱ)设



赌博有陷阱.某种赌博每局的规则是:赌客先在标记有
,
,
,
,
的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的
倍作为其奖金(单位:元).若随机变量
和
分别表示赌客在一局赌博中的赌金和奖金,则
(元).









(本小题满分12分)某校为进行爱国主义教育,在全校组织了一次有关钓鱼岛历史知识的竞赛.现有甲、乙两队参加钓鱼岛知识竞赛,每队3人,规定每人回答一个问题,答对为本队赢得1分,答错得0分.假设甲队中每人答对的概率均为
,乙队中3人答对的概率分别为
,且各人回答正确与否相互之间没有影响,用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用
表示“甲、乙两个队总得分之和等于3”这一事件,用
表示“甲队总得分大于乙队总得分” 这一事件,求
.


(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用


