- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:

(1)计算该炮兵连这8周中总的命中频率
,并确定第几周的命中频率最高;
(2)以(1)中的
作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为
,求
的数学期望;
(3)以(1)中的
作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过
?(取
)

(1)计算该炮兵连这8周中总的命中频率

(2)以(1)中的



(3)以(1)中的



某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年
户居民每户的月均用电量(单位:度),将数据按照
,
,
,
,
,
,
,
,
分成9组,制成了如下图所示的频率分布直方图.

(1)求频率分布直方图中
的值并估计居民月均用电量的中位数;
(2)从样本中月均用电量不低于700度的用户中随机抽取4户,用
表示月均用电量不低于800度的用户数,求随机变量
的分布列及数学期望.











(1)求频率分布直方图中

(2)从样本中月均用电量不低于700度的用户中随机抽取4户,用


某电子元件厂对一批新产品的使用寿命进行检验,并且厂家规定使用寿命在
为合格品,使用寿命超过500小时为优质品,质检科抽取了一部分产品做样本,经检测统计后,绘制出了该产品使用寿命的频率分布直方图(如图):

(1)根据频率分布直方图估计该厂产品为合格品或优质品的概率,并估计该批产品的平均使用寿命;
(2)从这批产品中,采取随机抽样的方法每次抽取一件产品,抽取4次,若以上述频率作为概率,记随机变量
为抽出的优质品的个数,列出
的分布列,并求出其数学期望.


(1)根据频率分布直方图估计该厂产品为合格品或优质品的概率,并估计该批产品的平均使用寿命;
(2)从这批产品中,采取随机抽样的方法每次抽取一件产品,抽取4次,若以上述频率作为概率,记随机变量


如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为
,据此解答如下问题.

(Ⅰ)求全班人数及分数在
之间的频率;
(Ⅱ)现从分数在
之间的试卷中任取 3 份分析学生情况,设抽取的试卷分数在
的份数为
,求
的分布列和数学望期.


(Ⅰ)求全班人数及分数在

(Ⅱ)现从分数在




某中学高二年级开设五门大学先修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理,商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:

其中选修数学学科的人数所占频率为0.6,为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;
(2)从选出的10名学生中随机抽取3人,记
为选择线性代数人数与选择微积分人数差的绝对值,求随机变量
的分布列和数学期望.

其中选修数学学科的人数所占频率为0.6,为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;
(2)从选出的10名学生中随机抽取3人,记


某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.下图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知
,历年中日泄流量在区间[30,60)
的年平均天数为156,一年按364天计.

(Ⅰ)请把频率分布直方图补充完整;
(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如
时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?

的年平均天数为156,一年按364天计.

(Ⅰ)请把频率分布直方图补充完整;
(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如

某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.

如图所示,某班一次数学测试成绩的茎叶图(如图甲)和频率分布直方图(如图乙)都受到不同程度的污损,其中,频率分布直方图的分组区间分别为
,据此解答如下问题.(注:直方图中
与
对应的长方形的高度一样)

(1)若按题中的分组情况进行分层抽样,共抽取
人,那么成绩在
之间应抽取多少人?
(2)现从分数在
之间的试卷中任取
份分析学生失分情况,设抽取的试卷分数在
之间 份数为
,求
的分布列和数学期望.




(1)若按题中的分组情况进行分层抽样,共抽取


(2)现从分数在





班主任为了对本班学生的考试成绩进行分析,决定从全班
位女同学,
位男同学中随机
抽取一个容量为
的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少;
(Ⅱ)随机抽取
位同学,数学成绩由低到高依次为:
;物理成绩由低到高依次为:
,若规定
分(含
分)以上为优秀,记
为这
位同学中数学和物理分数均为优秀的人数,求
的分布列和数学期望.


抽取一个容量为

(Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少;
(Ⅱ)随机抽取








2016世界特色魅力城市
强新鲜出炉,包括黄山市在内的
个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了
人,得如下所示的列联表:
(1)若在
这人中,按性别分层抽取一个容量为
的样本,女性应抽
人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过
前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取
人赠送精美纪念品,记这
人中赞成“自助游”人数为
,求
的分布列和数学期望.
附:



| 赞成“自助游” | 不赞成“自助游” | 合计 |
男性 | ![]() | | |
女性 | | ![]() | |
合计 | | | ![]() |
(1)若在




(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取




附:

![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |