汽车店是一种以“四位一体”为核心的特许经营模式,包括整车销售、零配件销售、售后服务、信息反馈等。某品牌汽车店为了了解三种类型汽车质量问题,对售出的三种类型汽车各取100辆进行跟踪服务,发现各车型一年内需要维修的车辆如下表所示1.
表1
(1)某公司一次性从店购买该品牌型汽车各一辆,记表示这三辆车的一年内需要维修的车辆数,求的分布列及数学期望.(各型汽车维修的频率视为其需要维修的概率).
(2)该品牌汽车店为了对厂家新研发的一种产品进行合理定价,将该产品按使事先拟定的各种价格进行试销相等时间,得到数据如表2.
预计在今后的销售中,销量与单价仍然服从的关系,且该产品的成本是500元/件,为使4S店获得最大利润(利润=销售收入-成本),该产品的单价应定位多少元?
表1
车型
 
 
 
频数
20
20
40
 
表2
单价(元)
800
820
840
850
880
900
销量(件)
90
84
83
80
75
68
 
当前题号:1 | 题型:解答题 | 难度:0.99
2017年某市政府为了有效改善市区道路交通拥堵状况出台了一系列的改善措施,其中市区公交站点重新布局和建设作为重点项目.市政府相关部门根据交通拥堵情况制订了“市区公交站点重新布局方案”,现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”.调查人员分别在市区的各公交站点随机抽取若干市民对该“方案”进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,不低于80分认定为非常满意;③市民对公交站点布局的满意率不低于75%即可启用该“方案”;④用样本的频率代替概率.

(1)从该市800万人的市民中随机抽取5人,求恰有2人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由.
(2)已知在评分低于60分的被调查者中,老年人占 ,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中抽取3人担任群众督查员,记为群众督查员中的老人的人数,求随机变量的分布列及其数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望
(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值的大小,及方差的大小.(只需写出结论)
当前题号:3 | 题型:解答题 | 难度:0.99
某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集的数据分成三组,并作出如下频率分布直方图:

(1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经济损失则取,且的概率等于经济损失落入的频率)。现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经济损失的和为,求的分布列和数学期望.
(2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
 
经济损失不超过4000元
经济损失超过4000元
合计
捐款超过500元
30
 
 
捐款不超过500元
 
6
 
合计
 
 
 
 
附:临界值表参考公式:

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
当前题号:4 | 题型:解答题 | 难度:0.99
月某城市国际马拉松赛正式举行,组委会对名裁判人员进行业务培训,现按年龄(单位:岁)进行分组统计:第,第,第,第,第,得到的频率分布直方图如下:
(1)培训前组委会用分层抽样调查方式在第组共抽取了名裁判人员进行座谈,若将其中抽取的第组的人员记作,第组的人员记作,第组的人员记作,若组委会决定从上述名裁判人员中再随机选人参加新闻发布会,要求这组各选人,试求裁判人员不同时被选择的概率;
(2)培训最后环节,组委会决定从这名裁判中年龄在的裁判人员里面随机选取名参加业务考试,设年龄在中选取的人数为,求随机变量的分布列及数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)估计该组数据的中位数、众数;
(2)由频率分布直方图可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求
(3)在(2)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
(ⅰ)得分不低于可获赠2次随机话费,得分低于则只有1次;
(ⅱ)每次赠送的随机话费和对应概率如下:

现有一位市民要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列和数学期望.
附:
,则.
当前题号:6 | 题型:解答题 | 难度:0.99
某葡萄基地的种植专家发现,葡萄每株的收获量(单位:)和与它“相近”葡萄的株数具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过),并分别记录了相近葡萄的株数为1,2,3,4,5,6,7时,该葡萄每株收获量的相关数据如下:

1
2
3
5
6
7

15
13
12
10
9
7
 
 
 
 
 
 
 
 

(1)求该葡萄每株的收获量关于它“相近”葡萄的株数的线性回归方程及的方差
(2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)
(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)
当前题号:7 | 题型:解答题 | 难度:0.99
依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

试估计该河流在8月份水位的中位数;
(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;
(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
方案
防控等级
费用(单位:万元)
方案一
无措施
0
方案二
防控1级灾害
40
方案三
防控2级灾害
100
 
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.
(1)由折线图可以看出,可用线性回归模型拟合年度天然气需示量 (单位:千万立方米)与年份 (单位:年)之间的关系.并且已知关于的线性回归方程是,试确定的值,并预测2018年该地区的天然气需求量;

(2)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:
类型



车辆数目
10
20
30
 
为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“”,求的分布列及期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某地区对一种新品种小麦在一块试验田进行试种.从试验田中抽取株小麦,测量这些小麦的生长指标值,由测量结果得如下频数分布表:
生长指标值分组







频数







 

(1)在相应位置上作出这些数据的频率分布直方图;
(2)求这株小麦生长指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(3)由直方图可以认为,这种小麦的生长指标值服从正态分布,其中近似为样本平均数近似为样本方差.
①利用该正态分布,求
②若从试验田中抽取株小麦,记表示这株小麦中生长指标值位于区间的小麦株数,利用①的结果,求.
附:.
,则
.
当前题号:10 | 题型:解答题 | 难度:0.99