- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
(参考公式:K2=
,其中n=a+b+c+d)
| 喜欢《最强大脑》 | 不喜欢《最强大脑》 | 合计 |
男生 | | 15 | |
女生 | 15 | | |
合计 | | | |
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=

近年来我国电子商务行业迎来发展的新机遇,2016年双11期间,某购物平台的销售业
绩高达1207亿人民币。与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量
:
①求对商品和服务全好评的次数
的分布列;
②求
的数学期望和方差.

(
,其中
)
绩高达1207亿人民币。与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量

①求对商品和服务全好评的次数

②求


(


| 对服务好评 | 对服务不满意 | 合计 |
对商品好评 | 140 | | |
对商品不满意 | | 10 | |
合计 | | | 200 |
在一次诗词知识竞赛调査中,发现参赛选手多数分为两个年龄段:
(单位:岁),其中答对诗词名句与否的人数如图所示.

(1)完成下面的
列联表;判断是否有
的把握认为答对诗词名与年龄有关,请说明你的理由;(参考公式:
,其中
)

(2)若计划在这次场外调查中按年龄段分层抽样选取6名选手,求3名选手中在
岁之间的人数的分布列和期望.


(1)完成下面的





(2)若计划在这次场外调查中按年龄段分层抽样选取6名选手,求3名选手中在

近年来,我国电子商务蓬勃发展. 2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(Ⅰ) 根据已知条件完成下面的
列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?
(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量
,求
的分布列和数学期望
.
附:
(其中
为样本容量)
(Ⅰ) 根据已知条件完成下面的

| 对服务满意 | 对服务不满意 | 合计 |
对商品满意 | 80 | | |
对商品不满意 | | | |
合计 | | | 200 |
(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量



附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
2016年奥运会于8月5日在巴西里约热内卢举行,为了解某单位员工对奥运会的关注情况,对本单位部分员工进行了调查,得到平均每天看奥运会直播时间的茎叶图如下(单位:分钟),若平均每天看奥运会直播不低于70分钟的员工可以视为“关注奥运”,否则视为“不关注奥运”.


(1)试完成下面表格,并根据此数据判断是否有99.5%以上的把握认为是否“关注奥运会”与性别有关?
(2)若从参与调查且平均每天观看奥运会时间不低于110分钟的员工中抽取4人,用
表示抽取的女员工数,求
的分布列和期望值.
参考公式:
,其中


(1)试完成下面表格,并根据此数据判断是否有99.5%以上的把握认为是否“关注奥运会”与性别有关?
(2)若从参与调查且平均每天观看奥运会时间不低于110分钟的员工中抽取4人,用


参考公式:


![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

(I)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(II)经过多次测试后,女生甲每次解答一道几何题所用的时间在5—7分钟,女生乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(III)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为
,求
的分布列及数学期望
.
附表及公式

(I)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(II)经过多次测试后,女生甲每次解答一道几何题所用的时间在5—7分钟,女生乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(III)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为



附表及公式

心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取
名同学(男
人,女
人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人):

(1)能否据此判断有
的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的
名女生中,任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为
,求
的分布列和
.
附表及公式:





| 几何题 | 代数题 | 总计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
| 几何题 | 代数题 | 总计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有

(2)现从选择做几何题的




附表及公式:


随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了30名男生、20名女生进行为期一周的跟踪调查,调查结果如下表所示:
(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?
(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人数X的分布列和数学期望.
参考公式:
| 平均每天使用手机超过3小时 | 平均每天使用手机不超过3小时 | 合计 |
男生 | 25 | 5 | 30 |
女生 | 9 | 11 | 20 |
合计 | 34 | 16 | 50 |
(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?
(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人数X的分布列和数学期望.
参考公式:

P(K2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答,统计情况如下表:(单位:人)
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择几何题的8名女生中任意抽取两人对他们的答题进行研究,记甲、乙两名女生被抽到的人数为
,求
的分布列及数学期望.
附表及公式:

| 几何题 | 代数题 | 总计 |
男 同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择几何题的8名女生中任意抽取两人对他们的答题进行研究,记甲、乙两名女生被抽到的人数为


附表及公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

在一次诗词知识竞赛调查中,发现参赛选手分为两个年龄(单位:岁)段:
,
,其中答对诗词名句与否的人数如图所示.

(1)完成下面2×2列联表;
(2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;
(3)现按年龄段分层抽样选取6名选手,若从这6名选手中选取3名选手,求3名选手中年龄在
岁范围人数的分布列和数学期望.



(1)完成下面2×2列联表;
年龄段 | 正确 | 错误 | 合计 |
![]() | | | |
![]() | | | |
合计 | | | |
(2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;
(3)现按年龄段分层抽样选取6名选手,若从这6名选手中选取3名选手,求3名选手中年龄在
