- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个袋子中有7个除颜色外完全相同的小球,其中5个红色,2个黑色.从袋中随机地取出3个小球.其中取到黑球的个数为
,则
(结果用最简分数作答).


(本小题满分12分)某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为
,且相互间没有影响.
(Ⅰ)求选手甲进入复赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.

(Ⅰ)求选手甲进入复赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示

(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.
(2)从该班中任意选两名学生,用
表示这两人参加活动次数之差的绝对值,求随机变量
的分布列及数学期望
.
(3)从该班中任意选两名学生,用
表示这两人参加活动次数之和,记“函数
在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.

(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.
(2)从该班中任意选两名学生,用



(3)从该班中任意选两名学生,用


某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.
(1)从这16人中随机选取3人,记
表示抽到“极幸福”的人数,求
的分布列及数学期望,并求出至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记
表示抽到“极幸福”的人数,求
的数学期望.

若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.
(1)从这16人中随机选取3人,记


(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记


(本小题15分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为
,某植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验, 设
表示四次实验结束时实验成功的次数与失败的次数之差的绝对值.
(1)求随机变量
的分布列及
的数学期望
;
(2)记“不等式
的解集是实数集R”为事件A,求事件A发生的概率
.


(1)求随机变量



(2)记“不等式


(满分12分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
。且他们是否破译出密码互不影响。若三人中只有甲破译出密码的概率为
。
(Ⅰ)求
的值;
(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。


(Ⅰ)求

(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。
学生的学习能力参数
可有效衡量学生的综合能力,
越大,综合能力越强,为推动数学知识的发展,提高学生的综合能力.某校根据学生的学习能力参数
将参加数学竞赛小组的学生分成了如下三类:
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了
人,根据其学习能力参数
,作出了频率与频数的统计表:
(1)求
,
,
,
的值
(2)规定:学习能力参数
不少于70称为优秀.若从这
人中任选
人,记抽到到的优秀人数为随机变量
,求
的分布列和数学期望



学习能力参数![]() | 学习能力参数![]() | ||
![]() | ![]() | ![]() | |
学生人数(人) | 15 | 10 | ![]() |
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了


分组 | 频数(人) | 频率 |
![]() | 3 | |
![]() | ![]() | ![]() |
![]() | | ![]() |
合计 | ![]() | ![]() |
(1)求




(2)规定:学习能力参数




