- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- 事件的独立性
- 独立重复试验
- + 二项分布
- 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年高考前第二次适应性训练结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布
的密度曲线非常拟和,据此估计:在全市随机抽取的
名高三同学中,恰有
名同学的英语成绩超过
分的概率是( )




A.![]() | B.![]() | C.![]() | D.![]() |
为了响应国家发展足球的战略,某校在秋季运动会中,安排了足球射门比赛.现有10名同学参加足球射门比赛,已知每名同学踢进的概率均为
,每名同学有2次射门机会,且各同学射门之间没有影响.现规定:踢进两个得10分,踢进一个得5分,一个未进得0分,记
为10个同学的得分总和,则
的数学期望为( )



A.30 | B.40 | C.60 | D.80 |
环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数),现随机抽取20天的指数(见下表),将指数不低于
视为当天空气质量优良.
(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用
表示抽到空气质量为优良的天数,求
的分布列及数学期望.

天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空气质量指数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空气质量指数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用


从2016年1月1日起全国统一实施全面两孩政策. 为了解适龄民众对放开
生二胎政策的态度,某市选取70后作为调查对象,随机调查了10人,其中打算生二胎
的有4人,不打算生二胎的有6人.
(1)从这10人中随机抽取3人,记打算生二胎的人数为
,求随机变量
的分布列和数学期望;
(2)若以这10人的样本数据估计该市的总体数据,且以频率作为概率,从该市70后中随机抽取3人,记打算生二胎的人数为
,求随机变量
的分布列和数学期望.
生二胎政策的态度,某市选取70后作为调查对象,随机调查了10人,其中打算生二胎
的有4人,不打算生二胎的有6人.
(1)从这10人中随机抽取3人,记打算生二胎的人数为


(2)若以这10人的样本数据估计该市的总体数据,且以频率作为概率,从该市70后中随机抽取3人,记打算生二胎的人数为


已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为
,
,
,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.
(1)求审核过程中只通过两道程序的概率;
(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为
,求
的分布列及数学期望.



(1)求审核过程中只通过两道程序的概率;
(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为


为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布
,假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,则
( )
附:若随机变量Z服从正态分布
,则
.



附:若随机变量Z服从正态分布


A.0.0026 | B.0.0408 | C.0.0416 | D.0.9976 |