- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- 事件的独立性
- 独立重复试验
- + 二项分布
- 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲市有
万名高三学生参加了天一大联考,根据学生数学成绩(满分:
分)的大数据分析可知,本次数学成绩
服从正态分布,即
,且
,
.
(1)求
的值.
(2)现从甲市参加此次联考的高三学生中,随机抽取
名学生进行问卷调查,其中数学成绩高于
分的人数为
,求
.
(3)与甲市相邻的乙市也有
万名高三学生参加了此次联考,且其数学成绩
服从正态分布
.某高校规定此次联考数学成绩高于
分的学生可参加自主招生考试,则甲和乙哪个城市能够参加自主招生考试的学生更多?
附:若随机变量
,则
,
,
.






(1)求

(2)现从甲市参加此次联考的高三学生中,随机抽取




(3)与甲市相邻的乙市也有




附:若随机变量




“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较髙,他独自一人解决项目M的概率为
;同时,有n个水平相同的人也在相互独立地研究项目M,他们各自独立地解决项目M的概率都是0.5,这个人的团队解决项目M的概率为
,若
,则n的最小值是______________.



某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为
,且甲、乙两人是否答对每个试题互不影响.
(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为
,求
的分布列及数学期望和方差.

(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为


(本小题满分12分)
重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里
0.2元/分钟”.刚在重庆参加工作的小刘拟租用“共享吉利博瑞车”上下班,同单位的邻居老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔开车上下班总共也需花费大约1小时”,并将自己近50天的往返开车的花费时间情况统计如表:

将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.
(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);
(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有
天为“最优选择”,求
的分布列和数学期望.
重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里


将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.
(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);
(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有


某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2018年享受此项政策的自主创业人员中抽取了100人进行调查统计,选择的贷款期限的频数如下表:
以上表中选择的各种贷款期限的频数作为2019年自主创业人员选择的各种贷款期限的概率.
(1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;
(2)设给某享受此项政策的自主创业人员的补贴为X元,写出X的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.
贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
频数 | 20 | 40 | 20 | 10 | 10 |
以上表中选择的各种贷款期限的频数作为2019年自主创业人员选择的各种贷款期限的概率.
(1)某大学2019年毕业生中共有3人准备申报此项贷款,计算其中恰有2人选择的贷款期限为12个月的概率;
(2)设给某享受此项政策的自主创业人员的补贴为X元,写出X的分布列;该市政府要做预算,若预计2019年全市有600人申报此项贷款,则估计2019年该市共要补贴多少万元.
某家畜研究机构发现每头成年牛感染H型疾病的概率是
,且每头成年牛是否感染H型疾病相互独立.
(1)记
头成年牛中恰有
头感染H型疾病的概率是
,求当概率
取何值时,
有最大值?
(2)若以(1)中确定的
值作为感染H型疾病的概率,设
头成年牛中恰有
头感染H型疾病的概率是
,求当
为何值时,
有最大值?

(1)记





(2)若以(1)中确定的






为了迎接2017年高考,了解学生的成绩状况,在一次省质检中,某省教育部门随机抽取了500名学生的数学考试成绩,统计如下表所示:
(1)计算各组成绩的频率,并填写在表中;
(2)已知本次质检数学测试的成绩
,其中
近似为样本的平均数,
近似为样本方差
,若该省有10万考生,试估计数学成绩在
的人数;(以各组区间的中点值代表该组的取值)
(3)将频率视为概率,若从该省所有考生中随机抽取4人,记这4人中成绩在
的人数为
,求
的分布列以及数学期望.
参考数据:若
,则
,
,
.
成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数![]() | 30 | 120 | 210 | 100 | 40 |
(1)计算各组成绩的频率,并填写在表中;
成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数![]() | 30 | 120 | 210 | 100 | 40 |
频率 | | | | | |
(2)已知本次质检数学测试的成绩





(3)将频率视为概率,若从该省所有考生中随机抽取4人,记这4人中成绩在



参考数据:若




