- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- 事件的独立性
- 独立重复试验
- + 二项分布
- 利用二项分布求分布列
- 服从二项分布的随机变量概率最大问题
- 建立二项分布模型解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2019超长“三伏”来袭,虽然大部分人都了解“伏天”不宜吃生冷食物,但随着气温的不断攀升,仍然无法阻挡冷饮品销量的暴增.现在,某知名冷饮品销售公司通过随机抽样的方式,得到其100家加盟超市3天内进货总价的统计结果如下表所示:
(1)由频数分布表大致可以认为,被抽查超市3天内进货总价
,μ近似为这100家超市3天内进货总价的平均值(同一组中的数据用该组区间的中点值作代表),利用正态分布,求
;
(2)在(1)的条件下,该公司为增加销售额,特别为这100家超市制定如下抽奖方案:
①令m表示“超市3天内进货总价超过μ的百分点”,其中
.若
,则该超市获得1次抽奖机会;
,则该超市获得2次抽奖机会;
,则该超市获得3次抽奖机会;
,则该超市获得4次抽奖机会;
,则该超市获得5次抽奖机会;
,则该超市获得6次抽奖机会.另外,规定3天内进货总价低于μ的超市没有抽奖机会;
②每次抽奖中奖获得的奖金金额为1000元,每次抽奖中奖的概率为
.
设超市A参加了抽查,且超市A在3天内进货总价
百元.记X(单位:元)表示超市A获得的奖金总额,求X的分布列与数学期望.
附参考数据与公式:
,若
,则
,
,
.
组别(单位:百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 3 | 11 | 20 | 27 | 26 | 13 |
(1)由频数分布表大致可以认为,被抽查超市3天内进货总价


(2)在(1)的条件下,该公司为增加销售额,特别为这100家超市制定如下抽奖方案:
①令m表示“超市3天内进货总价超过μ的百分点”,其中







②每次抽奖中奖获得的奖金金额为1000元,每次抽奖中奖的概率为

设超市A参加了抽查,且超市A在3天内进货总价

附参考数据与公式:





甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为
和
.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.
(1)用
表示甲同学连续三次答题中答对的次数,求随机变量
的分布列和数学期望;
(2)设
为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件
发生的概率.


(1)用


(2)设


甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是
,乙能答对其中的8道题,规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选.
(1)求甲恰有2个题目答对的概率;
(2)求乙答对的题目数X的分布列;
(3)试比较甲,乙两人平均答对的题目数的大小,并说明理由.

(1)求甲恰有2个题目答对的概率;
(2)求乙答对的题目数X的分布列;
(3)试比较甲,乙两人平均答对的题目数的大小,并说明理由.
现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.

(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;
(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为
,求
的概率分布及数学期望.

(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;
(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为


高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?
(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为
,求
的分布列与数学期望.

(Ⅰ)理论上,小球落入4号容器的概率是多少?
(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为


春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为
,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设
为其中成活的株数,若
的方差
,
,则
________.






某网站用“100分制”调查一社区人们的幸福度.现从调查人群中随机抽取10名,以下茎叶图记录了他们的幸福度分数(以十位数字为茎,个位数字为叶);若幸福度不低于95分,则称该人的幸福度为“极幸福”.

(1)从这10人中随机选取3人,记
表示抽到“极幸福”的人数,求
的分布列及数学期望;
(2)以这10人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记
表示抽到“极幸福”的人数,求
的数学期望和方差.

(1)从这10人中随机选取3人,记


(2)以这10人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记

