- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某高中学生的体能测试结果中,随机抽取100名学生的测试结果,按体重分组得到如图所示的频率分布直方图.

(1)若该校约有
的学生体重不超过“标准体重
”,试估计
的值,并说明理由;
(2)从第3、4、5组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数
的分布列及期望.

(1)若该校约有



(2)从第3、4、5组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数

为弘扬中华优秀传统文化,某中学高三年级利用课余时间组织学生开展小型知识竞赛.比赛规则:每个参赛者回答A、B两组题目,每组题目各有两道题,每道题答对得1分,答错得0分,两组题目得分的和做为该选手的比赛成绩.小明估计答对A组每道题的概率均为
,答对B组每道题的概率均为
.
(Ⅰ)按此估计求小明A组题得分比B组题得分多1分的概率;
(Ⅱ)记小明在比赛中的得分为ξ,按此估计ξ的分布列和数学期望Eξ.


(Ⅰ)按此估计求小明A组题得分比B组题得分多1分的概率;
(Ⅱ)记小明在比赛中的得分为ξ,按此估计ξ的分布列和数学期望Eξ.
为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了100户家庭进行问卷调查.经调查发现,这些家庭的月收入在3000元到10000元之间,根据统计数据作出如图所示的频率分布直方图:

(1)经统计发现,该社区居民的家庭月收入
(单位:百元)近似地服从正态分布
,其中
近似为样本平均数.若
落在区间
的左侧,则可认为该家庭属“收入较低家庭”,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区
家庭月收入为4100元,试判断
家庭是否属于“收入较低家庭”,并说明原因;
(2)将样本的频率视为总体的概率.
①从该社区所有家庭中随机抽取
户家庭,若这
户家庭月收入均低于8000元的概率不小于50%,求
的最大值;
②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调查的家庭制定了赠送购物卡的活动,赠送方式为:家庭月收入低于
的获赠两次随机购物卡,家庭月收入不低于
的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:
则
家庭预期获得的购物卡金额为多少元?(结果保留整数)

(1)经统计发现,该社区居民的家庭月收入







(2)将样本的频率视为总体的概率.
①从该社区所有家庭中随机抽取



②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调查的家庭制定了赠送购物卡的活动,赠送方式为:家庭月收入低于


赠送购物卡金额(单位:元) | 100 | 200 | 300 |
概率 | ![]() | ![]() | ![]() |
则

甲、乙两人用一颗均匀的骰子(一种正方体玩具,六个面分别标有数字1,2,3,4,5,6)做抛掷游戏,并制定如下规则:若掷出的点数不大于4,则由原掷骰子的人继续掷,否则,轮到对方掷.已知甲先掷.
(1)若共抛掷4次,求甲抛掷次数的概率分布列和数学期望;
(2)求第n次(
,
)由乙抛掷的概率.
(1)若共抛掷4次,求甲抛掷次数的概率分布列和数学期望;
(2)求第n次(


为了参加第二届全国数学建模竞赛,长郡中学在高二年级举办了一次选拔赛,共有60名高二学生报名参加,按照不同班级统计参赛人数,如下表所示:
(1)从这60名高二学生中随机选出2人,求这2人在同一班级的概率;
(2)现从这60名高二学生中随机选出2人作为代表,进行大赛前的发言,设选出的2人中宏志班的学生人数为
,求随机变量
的分布列.
班级 | 宏志班 | 珍珠班 | 英才班 | 精英班 |
参赛人数 | 20 | 15 | 15 | 10 |
(1)从这60名高二学生中随机选出2人,求这2人在同一班级的概率;
(2)现从这60名高二学生中随机选出2人作为代表,进行大赛前的发言,设选出的2人中宏志班的学生人数为


某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.
(1)求某选手第二次抽到的不是科技类题目的概率;
(2)求某选手抽到体育类题目数ξ的分布列和数学期望Eξ.
(1)求某选手第二次抽到的不是科技类题目的概率;
(2)求某选手抽到体育类题目数ξ的分布列和数学期望Eξ.
将编号为1,2,3,4的4个小球随机放到A、B、C三个不同的小盒中,每个小盒至少放一个小球.
(Ⅰ)求编号为1, 2的小球同时放到A盒的概率;
(Ⅱ)设随机变量
为放入A盒的小球的个数,求
的分布列与数学期望.
(Ⅰ)求编号为1, 2的小球同时放到A盒的概率;
(Ⅱ)设随机变量


(本小题满分13分)某批产品成箱包装,每箱
件.一用户在购进该批产品前先取出
箱,设取出的
箱中,第一,二,三箱中分别有
件,
件,
件二等品,其余为一等品.
(1)在取出的
箱中,若该用户从第三箱中有放回的抽取
次(每次一件),求恰有两次抽到二等品的概率;
(2)在取出的
箱中,若该用户再从每箱中任意抽取
件产品进行检验,用
表示抽检的
件产品中二等品的件数,求
的分布列及数学期望.






(1)在取出的


(2)在取出的





端午节吃粽子是我国的传统习俗,设一盘中装有6个粽子,其中豆沙粽1个,肉粽2个,白粽3个,这三种粽子的外观完全相同.
(Ⅰ)从中不放回的任取3个,记X表示取到的肉粽个数,求X的分布列和
;
(Ⅱ)从中有放回的任取3个,记
表示取到的肉棕个数,求
;
(Ⅲ)比较
与
的大小(只需写出结论).
(Ⅰ)从中不放回的任取3个,记X表示取到的肉粽个数,求X的分布列和

(Ⅱ)从中有放回的任取3个,记


(Ⅲ)比较


为迎接
年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过
小时免费,超过
小时的部分每小时收费标准为
元(不足1小时的部分按
小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过
小时离开的概率分别为
、
;
小时以上且不超过
小时离开的概率分别为
、
;两人滑雪时间都不会超过
小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量
(单位:元),求
的分布列与数学期望
,方差
.













(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量



