- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.
(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.
(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为
,答对文化生活类题目的概率为
.设该参赛者答对的题目数为X,求X的分布列和数学期望.
(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.
(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为


“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
随机抽取某市1000名同一收入层级的
从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.
假设该市该收入层级的
从业者都独自享受专项附加扣除,将预估的该市该收入层级的
从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的
从业者2019年月缴个税为
元,求
的分布列和期望;
(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的
从业者各月少缴交的个税之和就超过2019年的月收入?
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
| 旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | ||
缴税级数 | 每月应纳税所得额(含税)=收入-个税起征点 | 税率(%) | 每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除 | 税率(%) |
1 | 不超过1500元部分 | 3 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元部分 | 10 | 超过3000元至12000元部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元至55000元部分 | 30 | 超过35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
随机抽取某市1000名同一收入层级的

假设该市该收入层级的


(1)设该市该收入层级的



(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的

某技术公司新开发了
两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
(1)试分别估计产品
,产品
为正品的概率;
(2)生产一件产品
,若是正品可盈利80元,次品则亏损10元;生产一件产品
,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记
为生产1件产品
和1件产品
所得的总利润,求随机变量
的分列和数学期望。

测试指标 | ![]() | ![]() | ![]() | ![]() | ![]() |
产品![]() | 8 | 12 | 40 | 32 | 8 |
产品![]() | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计产品


(2)生产一件产品






学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的
,对教师管理水平给出好评的学生人数为总数的
,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的
列联表:
请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量
.
①求对教师教学水平和教师管理水平全好评的人数
的分布列(概率用组合数算式表示);
②求
的数学期望和方差.
(
,其中
)


(1)填写教师教学水平和教师管理水平评价的

| 对教师管理水平好评 | 对教师管理水平不满意 | 合计 |
对教师教学水平好评 | | | |
对教师教学水平不满意 | | | |
合计 | | | |
请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量

①求对教师教学水平和教师管理水平全好评的人数

②求

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(


2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法抽取
名学生进行调查.
(1)已知抽取的
名学生中含男生55人,求
的值;
(2)为了了解学生对自选科目中“物理”和“地理”两个科目的选课意向,对在(1)条件下抽取到的
名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的
列联表,请将列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
(3)在抽取到的选择“地理”的学生中按分层抽样抽取6名,再从这6名学生中随机抽取3人,设这3人中女生的人数为
,求
的分布列及数学期望.
附参考公式及数据:
,其中
.

(1)已知抽取的


(2)为了了解学生对自选科目中“物理”和“地理”两个科目的选课意向,对在(1)条件下抽取到的



| 选择“物理” | 选择“地理” | 总计 |
男生 | | 10 | |
女生 | 25 | | |
总计 | | | |
(3)在抽取到的选择“地理”的学生中按分层抽样抽取6名,再从这6名学生中随机抽取3人,设这3人中女生的人数为


附参考公式及数据:


![]() | 0.05 | 0.01 |
![]() | 3.841 | 6.635 |
有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数
的分布列及数学期望;
(Ⅲ)求该学生被该校录取的概率.
省数学竞赛一等奖 | 自主招生通过 | 高考达重点线 | 高考达该校分数线 |
0.5 | 0.6 | 0.9 | 0.7 |
若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)
(Ⅰ)求该学生参加自主招生考试的概率;
(Ⅱ)求该学生参加考试的次数

(Ⅲ)求该学生被该校录取的概率.
已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.
(1)求“摸球三次得分为5分”的概率;
(2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.
(1)求“摸球三次得分为5分”的概率;
(2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.
某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).


(1)当

(2)设一组电子元件的检测次数为


(3)估算当


有着“中国碳谷”之称的安徽省淮北市,名优特产众多,其中“塔山石榴”因其青皮软籽、籽粒饱满、晶莹剔透、汁多味甘而享誉天下.现调查表明,石榴的甜度与海拔、日照时长、昼夜温差有着极强的相关性,分别用
表示石榴甜度与海拔、日照时长、温差的相关程度,并对它们进行量化:0表示一般,1表示良,2表示优,再用综合指标
的值评定石榴的等级,若
则为一级;若
则为二级;若
则为三级.
近年来,周边各地市也开始发展石榴的种植,为了了解目前石榴在周边地市的种植情况,研究人员从不同地市随机抽取了12个石榴种植园,得到如下结果:
(1)若有石榴种植园120个,估计等级为一级的石榴种植园的数量;
(2)在所取样本的二级和三级石榴种植园中任取2个,
表示取到三级石榴种植园的数量,求随机变量
的分布列及数学期望.






种植园编号 | A | B | C | D | E | F |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
种植园编号 | G | H | I | J | K | L |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)若有石榴种植园120个,估计等级为一级的石榴种植园的数量;
(2)在所取样本的二级和三级石榴种植园中任取2个,


高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以
的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2…,7的球槽内.例如小球要掉入3号球槽,则在前5次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以
的概率向左滚下,或在前5次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以
的概率向右滚下.

(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;
(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为
元,其中
.
(i)求X的分布列:
(ii)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?




(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;
(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为


(i)求X的分布列:
(ii)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?