- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某重点高校数学教育专业的三位毕业生甲,乙,丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试合格就一同签约,否则两人都不签约,设每人面试合格的概率都是
,且面试是否合格互不影响,求:(1)至少有1人面试合格的概率;(2)签约人数X的分布列及数学期望。

编号为
的五位学生随意入座编号为
的五个座位,每位学生坐一个座位,设与座位编号相同的学生人数是
(1)试求恰好有
个学生与座位编号相同的概率
;
(2)求随机变量
的分布列



(1)试求恰好有


(2)求随机变量

广州市为了做好新一轮文明城市创建工作,有关部门为了解市民对《广州市创建全国文明城市小知识》的熟知程度,对下面两个问题进行了调查:
问题一:《广州市民“十不”行为规范》有哪“十不”?
问题二:广州市“一约三则”的内容是什么?
调查结果显示,




为使活动得到市民更好的配合,调查单位采取如下激励措施:正确回答问题一者奖励价值20元的礼物;正确回答问题二奖励价值30元的礼物,有一家庭的两成员(大人42岁,孩子13岁)参与了此项活动,小孩回答第一个问题,大人回答第二个问题,问这个家庭获得礼物价值的数学期望是多少?
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以
表示.

(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求
的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当
时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为
,求随机变量
的分布列和数学期望.


(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求

(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当



一个口袋里有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回而另外放入一个白球,这样继续下去,直到取出的球是白球时结束取球.求直到取到白球所需的抽取次数
的概率分布列

口袋中装着标有数字1,2,3,4的小球各2个,从口袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性相等,用
表示取出的3个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量
的概率分布和数学期望;
(Ⅲ)计分介于17分到35分之间的概率.

(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量

(Ⅲ)计分介于17分到35分之间的概率.
近年来空气污染是一个生活中重要的话题, PM2.5就是其中一个指标.PM2.5指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.PM2.5日均值在35微克/立方米以下空气质量为一级:在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.淮北相山区2014年12月1日至I0日每天的PM2.5监测数据如茎叶图所示.

(1)期间的某天小刘来此地旅游,求当天PM2.5日均监测数据未超标的概率;
(2)陶先生在此期间也有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(3)从所给10天的数据中任意抽取三天数据,记
表示抽到PM2.5监测数据超标的天数,求
的分布列及期望.

(1)期间的某天小刘来此地旅游,求当天PM2.5日均监测数据未超标的概率;
(2)陶先生在此期间也有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(3)从所给10天的数据中任意抽取三天数据,记


甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为
,乙每次投中的概率为
求:
(Ⅰ)乙投篮次数不超过1次的概率.
(Ⅱ)记甲、乙两人投篮次数和为ξ,求ξ的分布列和数学期望.


(Ⅰ)乙投篮次数不超过1次的概率.
(Ⅱ)记甲、乙两人投篮次数和为ξ,求ξ的分布列和数学期望.
有形状和大小完全相同的小球装在三个盒子里,每个盒子装
个.其中第一个盒子中有
个球标有字母
,有
个球标有字母
;第二个盒子中有
个红球和
个白球;第三个盒子中有
个红球和
个白球.现按如下规则进行试验:先在第一个盒子中随机抽取一个球,若取得字母
的球,则在第二个盒子中任取一球;若取得字母
的球,则在第三个盒子中任取一球.
(I)若第二次取出的是红球,则称试验成功,求试验成功的概率;
(II)若第二次在第二个盒子中取出红球,则得奖金
元,取出白球则得奖金
元.若第二次在第三个盒子中取出红球,则得奖金
元,取出白球则得奖金
元.求某人在一次试验中,所得奖金的分布列和期望.











(I)若第二次取出的是红球,则称试验成功,求试验成功的概率;
(II)若第二次在第二个盒子中取出红球,则得奖金




某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为
.
(1)试确定a,b的值;
(2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为X,求随机变量X的分布列.
视觉 听觉 | 视觉记忆能力 | ||||
偏低 | 中等 | 偏高 | 超常 | ||
听觉 记忆 能力 | 偏低 | 0 | 7 | 5 | 1 |
中等 | 1 | 8 | 3 | b | |
偏高 | 2 | a | 0 | 1 | |
超常 | 0 | 2 | 1 | 1 |
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为

(1)试确定a,b的值;
(2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为X,求随机变量X的分布列.