- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某同学参加了今年重庆市举办的数学、物理、化学三门学科竞赛的初赛,在成绩公布之前,老师估计他能进复赛的概率分别为
、
、
,且这名同学各门学科能否进复赛相互独立.
(1)求这名同学三门学科都能进复赛的概率;
(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望.



(1)求这名同学三门学科都能进复赛的概率;
(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望.
某商场为了解该商场某商品近5年日销售量(单位:件),随机抽取近5年50天的销售量,统计结果如下:
若将上表中频率视为概率,且每天的销售量相互独立.则在这5年中:
(1)求5天中恰好有3天销售量为150件的概率(用分式表示);
(2)已知每件该商品的利润为20元,用X表示该商品某两天销售的利润和(单位: 元),求X的分布列和数学期望.
日销售量 | 100 | 150 |
天数 | 30 | 20 |
频率 | ![]() | ![]() |
若将上表中频率视为概率,且每天的销售量相互独立.则在这5年中:
(1)求5天中恰好有3天销售量为150件的概率(用分式表示);
(2)已知每件该商品的利润为20元,用X表示该商品某两天销售的利润和(单位: 元),求X的分布列和数学期望.
某理科考生参加自主招生面试,从
道题中(
道甲组题和
道乙组题)不放回地依次任取
道作答.
(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;
(2)规定理科考生需作答
道甲组题和
道乙组题,该考生答对甲组题的概率均为
,答对乙组题的概率均为
,若每题答对得
,否则得零分.现该生已抽到
道题(
道甲组题和
道乙组题),求其所得总分的分布列与数学期望.




(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;
(2)规定理科考生需作答








1952年,以纳赛尔为首的革命力量发动武装起义,赢得埃及的真正独立。二十世纪五六十年代,非洲先后有三十多个国家取得独立。其中,仅1960年一年就出现十七个独立国家,因此这一年被称为“非洲独立年”。1990年3月纳米比亚的独立,标志着欧洲殖民者入侵和奴役非洲长达五个世纪历史的结束。上边材料反映了二战后 ( )
在2018年高校自主招生期间,某校把学生的平时成绩按“百分制”折算,选出前
名学生,并对这
名学生按成绩分组,第一组
,第二组
,第三组
,第四组
,第五组
.如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.

(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;
(2)若
大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若
大学本次面试中有
,
,
三位考官,规定获得至少两位考官的认可即为面试成功,且各考官面试结果相互独立.已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为
,
,
,求甲同学面试成功的概率;
②若
大学决定在这6名学生中随机抽取3名学生接受考官
的面试,第3组有
名学生被考官
面试,求
的分布列和数学期望.








(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;
(2)若

①若







②若





为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
(
)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为
的概率?
(
)若从阅读名著不少于
本的学生中任选
人,设选到的男学生人数为
,求随机变量
的分布列和数学期望.
(
)试判断男学生阅读名著本数的方差
与女学生阅读名著本数的方程
的大小.
| ![]() | ![]() | ![]() | ![]() | ![]() |
男生 | ![]() | ![]() | ![]() | ![]() | ![]() |
女生 | ![]() | ![]() | ![]() | ![]() | ![]() |
(


(





(



校运动会高二理三个班级的3名同学报名参加铅球、跳高、三级跳远3个运动项目,每名同学都可以从3个运动项目中随机选择一个,且每个人的选择相互独立.
(1)求3名同学恰好选择了2个不同运动项目的概率;
(Ⅱ)设选择跳高的人数为
试求
的分布列及数学期望.
(1)求3名同学恰好选择了2个不同运动项目的概率;
(Ⅱ)设选择跳高的人数为

