- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得
分、
分、
分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束.设选手甲第一关、第二关、第三关的概率分别为
,
,
,选手选择继续闯关的概率均为
,且各关之间闯关成功互不影响.
(1)求选手甲第一关闯关成功且所得分数为零的概率;
(2)设该学生所得总分数为
,求
的分布列与数学期望.







(1)求选手甲第一关闯关成功且所得分数为零的概率;
(2)设该学生所得总分数为


某射手在一次射击训练中,射击10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,则这个射手在一次射击中射中10环或7环的概率为_________.
一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取m个作为样本,称出它们的重量(单位:克),重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图(如图).

(1)根据样本数据,试估计盒子中小球重量的中位数与平均值(精确到0.01);
(2)从盒子装的大量小球中,随机抽取3个小球,其中重量在
内的小球个数为
,求
的分布列和数学期望.





(1)根据样本数据,试估计盒子中小球重量的中位数与平均值(精确到0.01);
(2)从盒子装的大量小球中,随机抽取3个小球,其中重量在



2016年1月1日,我国实行全面二孩政策,同时也对妇幼保健工作提出了更高的要求.某城市实行格化管理,该市妇联在格1与格2两个区域内随机抽取12个刚满8个月的婴儿的体重信息,体重分布数据的茎叶图如图所示(中位:斤,2斤1千克).体重不超过
的为合格.

(1)从格1与格2分别随机抽取2个婴儿,求格1至少一个婴儿体重合格且格2至少一个婴儿体重合格的概率;
(2)妇联从格1内8个婴儿中随机抽取4个进行抽检,若至少2个婴儿合格,则抽检通过,若至少3个合格,则抽检为良好.求格1在抽检通过的条件下,获得抽检为良好的概率;
(3)若从格1与格2内12个婴儿中随机抽取2个,用
表示格2内婴儿的个数,求
的分布列与数学期望.


(1)从格1与格2分别随机抽取2个婴儿,求格1至少一个婴儿体重合格且格2至少一个婴儿体重合格的概率;
(2)妇联从格1内8个婴儿中随机抽取4个进行抽检,若至少2个婴儿合格,则抽检通过,若至少3个合格,则抽检为良好.求格1在抽检通过的条件下,获得抽检为良好的概率;
(3)若从格1与格2内12个婴儿中随机抽取2个,用


甲命题:若随机变量ξ~N(3,σ2),若P(ξ≤2)=0.3,则P(ξ≤4)=0.7.乙命题:随机变量η﹣B(n,p),且Eη=300,Dη=200,则P=
,则正确的是()

A.甲正确乙错误 | B.甲错误乙正确 |
C.甲错误乙也错误 | D.甲正确乙也正确 |
某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子,若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4分.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量
表示该游戏者所得分数.
(1)求该游戏者有机会抛掷第3次骰子的概率;
(2)求随机变量
的分布列和数学期望.

(1)求该游戏者有机会抛掷第3次骰子的概率;
(2)求随机变量

假定某射手射击一次命中目标的概率为
.现有4发子弹,该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:

(1)X的概率分布;
(2)数学期望E(X).