“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100ml(不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.”某市交警在该市一交通岗前设点对过往的车辆进行抽查,经过一晚的抽查,共查出酒后驾车者60名,图甲是用酒精测试仪对这60 名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.

(1)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S的值,并说明S的统计意义;(图乙中数据分别表示图甲中各组的组中值及频率)

(2)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度属于70~90的范围,但他俩坚称没喝那么多,是测试仪不准,交警大队队长决定在被酒精测试仪测得酒精浓度属于70~90范围的酒后驾车者中随机抽出2人抽血检验,设为吴、李两位先生被抽中的人数,求的分布列,并求吴、李两位先生至少有1人被抽中的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:

若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
为了解今年某校高三毕业班准备报考飞行员学生的身体素质,学校对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选2人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学(成绩得分为整数,满分100分)进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在的人数为12人.

(Ⅰ)求此班级人数;
(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)记甲乙二人排在前三位的人数为,求的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
为了解学生完成数学作业所需时间,某学校统计了高三年级学生每天完成数学作业的平均时间介于30分钟到90分钟之间,图5是统计结果的频率分布直方图.

(1)数学教研组计划对作业完成较慢的20%的学生进行集中辅导,试求每天完成数学作业的平均时间为多少分钟以上的学生需要参加辅导?
(2)现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不超过50分钟的人数为,求的分布列和期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某市交警在该市一交通岗前设点对过往的车辆进行抽查,经过一晚的抽查,共查出酒后驾车者60名,图甲是用酒精测试仪对这60 名酒后驾车者血液中酒精浓度进行检测后依所得结果画出的频率分布直方图.

(1)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S值,并说明S的统计意义;(图乙中数据分别表示图甲中各组的组中值及频率)
(2)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度属于的范围,但他俩坚称没喝那么多,是测试仪不准,交警大队队长决定在被酒精测试仪测得酒精浓度属于范围的酒后驾车者中随机抽出2人抽血检验,为吴、李两位先生被抽中的人数,求的分布列,并求吴、李两位先生至少有1人被抽中的概率;
(3)很多人在喝酒后通过喝茶降解体内酒精浓度,但李时珍就曾指出酒后喝茶伤肾. 为研究长期酒后喝茶与肾损伤是否有关,某科研机构采集了统计数据如下表,请你从条件概率的角度给出判断结果,并说明理由.
 
没有肾损伤
有肾损伤
长期酒后喝茶
2099
49
酒后不喝茶
7775
42
 
当前题号:6 | 题型:解答题 | 难度:0.99
在2017年高校自主招生期间,某校把学生的平时成绩按“百分制”折算,选出前名学生,并对这名学生按成绩分组,第一组,第二组,第三组,第四组,第五组,如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为

(1)请在图中补全频率分布直方图;
(2)若大学决定在成绩高的第组中用分层抽样的方法抽取6名学生进行面试
(I)若大学本次面试中有三位考官,规定获得两位考官的认可即可面试成功,且各考官面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为,求甲同学面试成功的概率;
(II)若大学决定在这6名学生中随机抽取3名学生接受考官的面试,第3组总有名学生被考官面试,求的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
质检部门从企业生产的产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图的频率分布直方图,质量指标值落在区间内的频率之比为.
(Ⅰ)求这些产品质量指标值落在区间内的频率;
(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生两科的考试成绩的数据如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数.
(Ⅱ)若等级分别对应分,分,分,分,分.
(ⅰ)求该考场考生“数学与逻辑”科目的平均分.
(ⅱ)若该考场共有人得分大于分,其中有分,分,分.
从这人中随机抽取两人,求两人成绩之和的分布列和数学期望.
科目:数学与逻辑
科目:阅读与表达


 
当前题号:9 | 题型:解答题 | 难度:0.99
为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

(I)已知该校有名学生,试估计全校学生中,每天学习不足小时的人数.
(II)若从学习时间不少于小时的学生中选取人,设选到的男生人数为,求随机变量的分布列.
(III)试比较男生学习时间的方差与女生学习时间方差的大小.(只需写出结论).
当前题号:10 | 题型:解答题 | 难度:0.99