通过对某城市一天内单次租用共享自行车的时间分钟到钟的人进行统计,按照租车时间分组做出频率分布直方图,并作出租用时间和茎叶图(图中仅列出了时间在的数据).

(1)求的频率分布直方图中的
(2)从租用时间在分钟以上(含分钟)的人数中随机抽取人,设随机变量表示所抽取的人租用时间在内的人数,求随机变量的分布列及数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
从某校高中男生中随机选取100名学生,将他们的体重(单位:)数据绘制成频率分布直方图,如图所示.

(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在内的人数为,求其分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值与销售单价之间的关系,经统计得到如下数据:
等级代码数值
38
48
58
68
78
88
销售单价(元/kg)
16.8
18.8
20.8
22.8
24
25.8
 
(1)已知销售单价与等级代码数值之间存在线性相关关系,求关于的线性回归方程(系数精确到0.1);
(2)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为,求的分布列及数学期望.
参考公式:对一组数据,,其回归直线的斜率和截距最小二乘估计分别为:,.
参考数据:,.
当前题号:3 | 题型:解答题 | 难度:0.99
十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立

(1)求在未来3年里,至多1年污水排放量的概率;
(2)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当X∈[310,350)时,经济损失为60万元.为减少损失,现有三种应对方案:
方案一:防治350吨的污水排放,每年需要防治费3.8万元;
方案二:防治310吨的污水排放,每年需要防治费2万元;
方案三:不采取措施.
试比较上述三种方案,哪种方案好,并请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
某大型商场在2018年国庆举办了一次抽奖活动抽奖箱里放有3个红球,3个黑球和1个白球这些小球除颜色外大小形状完全相同,从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱活动另附说明如下:
凡购物满元者,凭购物打印凭条可获得一次抽奖机会;
凡购物满元者,凭购物打印凭条可获得两次抽奖机会;
若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;
若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;
若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据单位:元,绘制得到如图所示的茎叶图.

求这20位顾客中获得抽奖机会的顾客的购物消费数据的中位数与平均数结果精确到整数部分
记一次抽奖获得的红包奖金数单位:元X,求X的分布列及数学期望,并计算这20位顾客在抽奖中获得红包的总奖金数的平均值假定每位获得抽奖机会的顾客都会去抽奖
当前题号:5 | 题型:解答题 | 难度:0.99
某研究机构随机调查了两个企业各100名员工,得到了企业员工收入的频数分布表以及企业员工收入的统计图如下:
企业:
工资
人数

5

10

20

42

18

3

1

1
 
企业:

(1)若将频率视为概率,现从企业中随机抽取一名员工,求该员工收入不低于5000元的概率;
(2)(i)若从企业收入在员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在的人数的分布列.
(ii)若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:
下周一
无雨
无雨
有雨
有雨
下周二
无雨
有雨
无雨
有雨
收益
20万元
15万元
10万元
7.5万元
 
若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元,有雨时收益为10万元.额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.
(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;
(2)该基地是否应该外聘工人,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
在湖南师大附中的校园歌手大赛决赛中,有6位参赛选手(1号至6号)登台演出,由现场的100位同学投票选出最受欢迎的歌手,各位同学须彼此独立地在投票器上选出3位侯选人,其中甲同学是1号选手的同班同学,必选1号,另在2号至6号选手中随机选2名;乙同学不欣赏2号选手,必不选2号,在其他5位选手中随机选出3名;丙同学对6位选手的演唱没有偏爱,因此在1号至6号选手中随机选出3名.
(1)求同学甲选中3号且同学乙未选中3号选手的概率;
(2)设3号选手得到甲、乙、丙三位同学的票数之和为X,求X的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为”足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”.
消费金额/万卢布






合计
顾客人数
9
31
36
44
62
18
200
 
(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;
(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:
方案一:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元;
方案二:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元.
某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:
维修次数
0
1
2
3
机器台数
20
10
40
30
 
以上台机器维修次数的频率代替一台机器维修次数发生的概率,记表示这两台机器超过质保期后延保两年内共需维修的次数.
的分布列;
以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算?
当前题号:10 | 题型:解答题 | 难度:0.99