- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:

(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的
,
的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的
,
两段的复读生中,选两人进行座谈,设抽取的
的人数为随机变量
,求
的分布列与期望值。

(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的







从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.

(Ⅰ)求
的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取
人,用
表示身高在
以上的男生人数,求随机变量
的分布列和数学期望
.

(Ⅰ)求

(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取





中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点米布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口断井,以节约勘探费用,勘探初期数据资料见下表:
(1)
~
号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(2)现准备勘探新井
,若通过
号并计算出的
的值(
精确到
)与(1)中
的值差不超过
,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(3)设出油量与勘探深度的比值
不低于20的勘探井称为优质井,那么在原有
口井中任意勘探
口井,求勘探优质井数
的分布列与数学期望.
井号![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
坐标![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
钻探深度![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
出油量![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)





(2)现准备勘探新井








(参考公式和计算结果:

(3)设出油量与勘探深度的比值




国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效展开,参与抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,
表示开业第
天参加抽奖活动的人数,得到统计表格如下:

经过进一步的统计分析,发现
与
具有线性相关关系.
(1)根据上表给出的数据,用最小二乘法,求出
与
的线性回归方程
;
(2)若该分店此次抽奖活动自开业始,持续10天,参加抽奖的每位顾客抽到一等奖(价值200元奖品)的概率为
,抽到二等奖(价值100元奖品)的概率为
,抽到三等奖(价值10元奖品)的概率为
,试估计该分店在此次抽奖活动结束时送出多少元奖品?
参考公式:
,



经过进一步的统计分析,发现


(1)根据上表给出的数据,用最小二乘法,求出



(2)若该分店此次抽奖活动自开业始,持续10天,参加抽奖的每位顾客抽到一等奖(价值200元奖品)的概率为



参考公式:


为调查高中生的数学成绩与学生自主学习时间之间的相关关系,长郡中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占
,统计成绩后,得到如下的
列联表:
(1)请完成上面的
列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(2)(ⅰ)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是
,求
的分布列(概率用组合数算式表示);
(ⅱ)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:


| 分数大于等于120分 | 分数不足120分 | 合计 |
周做题时间不少于15小时 | | 4 | 19 |
周做题时间不足15小时 | | | |
合计 | | | 45 |
(1)请完成上面的

(2)(ⅰ)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是


(ⅱ)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
附:

医生的专业能力参数
可有效衡量医生的综合能力,
越大,综合能力越强,并规定: 能力参数
不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力
的频率分布直方图:

(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数
为同一组的概率;
②设这2名医生中能力参数
为优秀的人数为
,求随机变量
的分布列和期望.





(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数

②设这2名医生中能力参数



袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,
求:(1)列出所得分数X的分布列;(2)得分大于6分的概率.
求:(1)列出所得分数X的分布列;(2)得分大于6分的概率.
(本题满分14分)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别
进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表

(1) 求该校男生的人数并完成下面频率分布直方图;

(2)估计该校学生身高(单位:cm)在
的概率;
(3)在男生样本中,从身高(单位:cm)在
的男生中任选3人,设
表示所选3人中身高(单位:cm)在
的人数,求
的分布列和数学期望.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别
进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表

表2:女生身高频数分布表

(1) 求该校男生的人数并完成下面频率分布直方图;

(2)估计该校学生身高(单位:cm)在

(3)在男生样本中,从身高(单位:cm)在




某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示.


(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为
,求
的分布列和数学期望.


(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为

