- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
小华与另外
名同学进行“手心手背”游戏,规则是:
人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得
分,其余每人得
分.现
人共进行了
次游戏,记小华
次游戏得分之和为
,则
为( )









A.![]() | B.![]() | C.![]() | D.![]() |
某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为
,第二关每次闯过的概率均为
.假设他不放弃每次闯关机会,且每次闯关互不影响.
(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为
,求随机变量
的分布列和期望.。


(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为


为了研究学生的数学核心素养与抽象能力(指标
)、推理能力(指标
)、建模能力(指标
)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标
的值评定学生的数学核心素养,若
,则数学核心素养为一级;若
,则数学核心素养为二级;若
,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为
,求随机变量
的分布列及其数学期望.







学生编号 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为


某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为
,乙车间3台机器每天发生概率分别为
.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.
(1)求乙车间每天机器发生故障的台数的分布列;
(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.


(1)求乙车间每天机器发生故障的台数的分布列;
(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.
某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.
(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;
(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为
,求
的分布列;
(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.
(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;
(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为


(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.
已知某口袋中装有除颜色外其余完全相同的2个白球和3个黑球,现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球). 记换好后袋中的白球个数为
,则
的数学期望
=___,方差
=___ .




为评估
设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行评判(
表示相应事件的频率):
①
;②
;③
,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断
设备的性能等级.
(2)将直径小于等于
的零件或直径大于等于
的零件认定为是“次品”,将直径小于等于
的零件或直径大于等于
的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数
的数学期望.

直径/![]() | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值


(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为


①




(2)将直径小于等于




