- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分12分)在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设
分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求
依次成公差大于0的等差数列的概率;
(Ⅱ)求随机变量z的概率分布列和数学期望.

(Ⅰ)求

(Ⅱ)求随机变量z的概率分布列和数学期望.
袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下一次抽取一个,记下号码后放回去再抽取一个,总共取出两个球,设两个球号码之和为随机变量
,则
所有可能取值的个数是( )


A.5 | B.9 | C.10 | D.25 |
(15分)一个盒子里装有标号为1,2,3,…,n的n(n>3,且n∈N*)张标签,现随机地从盒子里无放回地抽取两张标签,记X为这两张标签上的数字之和,若X=3的概率为
.
(1)求n的值;
(2)求X的分布列.

(1)求n的值;
(2)求X的分布列.
某中学在高二开设了A,B,C,D共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生.
(Ⅰ)求这3名学生选择的选修课互不相同的概率;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数的数学期望.
(Ⅰ)求这3名学生选择的选修课互不相同的概率;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数的数学期望.
某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元.供大于求时,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润
(单位:元)关于当天需求量
(单位:件,
)的函数解析式;
(2)商店记录了50天该商品的日需求量
(单位:件),整理得下表:

若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求该商品一天的利润
的分布列及平均值.
(1)若商店一天购进该商品10件,求当天的利润



(2)商店记录了50天该商品的日需求量


若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求该商品一天的利润
