- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题共12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得
分,负者得
分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(Ⅰ)求
的值;
(Ⅱ)设
表示比赛停止时比赛的局数,求随机变量
的分布列和数学期望
.
甲,乙两人进行乒乓球比赛,约定每局胜者得






(Ⅰ)求

(Ⅱ)设



某老师从课本上抄录一个随机变量
的概率分布列如下表:

请甲同学计算
的数学期望,尽管“
”处完全无法看清,且两个“
”处字迹模糊,但能断定这两个“
”处的数值相同,据此,该同学给出了正确答案
.


请甲同学计算





甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是
,规定有一方累计2胜或者累计2和时,棋局结束.棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军.设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望.

(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望.
为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过
公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过
公里.已知甲、乙乘车不超过
公里的概率分别为
,
,甲、乙乘车超过
公里且不超过
公里的概率分别为
,
.
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量
,求
的分布列与数学期望.

乘坐里程![]() ![]() | ![]() | ![]() | ![]() |
票价(单位:元) | ![]() | ![]() | ![]() |
现有甲、乙两位乘客,他们乘坐的里程都不超过








(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量

