- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 基本事件
- 判断事件是否为基本事件
- 写出基本事件
- 古典概型的特征
- 整数值随机数
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋子中装有除颜色外其他均相同的编号为a,b的两个黑球和编号为c,d,e的三个红球,从中任意摸出两个球.
(1)求恰好摸出1个黑球和1个红球的概率:
(2)求至少摸出1个黑球的概率.
(1)求恰好摸出1个黑球和1个红球的概率:
(2)求至少摸出1个黑球的概率.
小波以游戏方式决定是去打球、唱歌还是去下棋。游戏规则为:以O为起点,再从
(如图)这六个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为
,若
就去打球,若
就去唱歌,若
就去下棋。
(1)写出数量积
的所有可能值;
(2)分别求小波去下棋的概率和不去唱歌的概率。





(1)写出数量积

(2)分别求小波去下棋的概率和不去唱歌的概率。

若一个三位数的个位数字大于十位数字,十位数字大于百位数字,我们就称这个三位数为“递增三位数”.现从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为__________.
某区在2019年教师招聘考试中,参加
、
、
、
四个岗位的应聘人数、录用人数和录用比例(精确到1%)如下:
(1)从表中所有应聘人员中随机抽取1人,试估计此人被录用的概率;
(2)将应聘
岗位的男性教师记为
,女性教师记为
,现从应聘
岗位的6人中随机抽取2人.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的2人性别不同”,求事件
发生的概率.




岗位 | 男性应聘人数 | 男性录用人数 | 男性录用比例 | 女性应聘人数 | 女性录用人数 | 女性录用比例 |
![]() | 269 | 167 | 62% | 40 | 24 | 60% |
![]() | 217 | 69 | 32% | 386 | 121 | 31% |
![]() | 44 | 26 | 59% | 38 | 22 | 58% |
![]() | 3 | 2 | 67% | 3 | 2 | 67% |
总计 | 533 | 264 | 50% | 467 | 169 | 36% |
(1)从表中所有应聘人员中随机抽取1人,试估计此人被录用的概率;
(2)将应聘




(i)试用所给字母列举出所有可能的抽取结果;
(ii)设


将一颗骰子先后抛掷2次,观察向上的点数.
(1)列举出所有可能的结果,并求两点数之和为5的概率;
(2)求以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点
在圆
的内部的概率.
(1)列举出所有可能的结果,并求两点数之和为5的概率;
(2)求以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点


我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于
的偶数可以表示为两个素数的和”,如
.现从不超过
的素数中,随机选取两个不同的数(两个数无序).(注:不超过
的素数有
,
,
,
,
,
)
(1)列举出满足条件的所有基本事件;
(2)求“选取的两个数之和等于
”事件发生的概率.










(1)列举出满足条件的所有基本事件;
(2)求“选取的两个数之和等于

党的十八提出:倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观.现将这十二个词依次写在六张规格相同的卡片的正反面(无区分),(如“富强、民主”写在同一张卡片的两面),从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
从3个黑球
,
,
和3个白球
,
,
中任取3个:
(1)写出基本事件空间
和基本事件总数n.
(2)求颜色都相同的概率;
(3)求恰有1个白球的概率.






(1)写出基本事件空间

(2)求颜色都相同的概率;
(3)求恰有1个白球的概率.
在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上
,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于1,则奖励饮料一瓶.
(1)求每对亲子获得飞机玩具的概率;
(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.

(1)求每对亲子获得飞机玩具的概率;
(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.