- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 基本事件
- 判断事件是否为基本事件
- 写出基本事件
- 古典概型的特征
- 整数值随机数
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
(1)从这5天中任选2天,记发芽的种子数分别为
,求事件“
均不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出
关于
的线性回归方程
.
(参考公式:
,
)
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差![]() | 10 | 11 | 13 | 12 | 8 |
发芽数![]() | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记发芽的种子数分别为


(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出



(参考公式:


某学校上学期的期中考试后,为了了解某学科的考试成绩,根据学生的考试成绩利用分层抽样抽取
名学生的成绩进行统计(所有学生成绩均不低于
分),得到学生成绩的频率分布直方图如图,回答下列问题;
(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;
(Ⅱ)已知本次全校考试成绩在
内的人数为
,试确定全校的总人数;
(Ⅲ)若本次考试抽查的
人中考试成绩在
内的有
名女生,其余为男生,从中选择两名学生,求选择一名男生与一名女生的概率.


(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;
(Ⅱ)已知本次全校考试成绩在


(Ⅲ)若本次考试抽查的




为维护交通秩序,防范电动自行车被盗,天津市公安局决定,开展二轮电动自行车免费登记、上牌照工作.电动自行车牌照分免费和收费(安装防盗装置)两大类,群众可以 自愿选择安装.已知甲、乙、丙三个不同类型小区的人数分别为15000,15000,20000.交管部门为了解社区居民意愿,现采用分层抽样的方法从中抽取10人进行电话访谈.
(Ⅰ)应从甲小区和丙小区的居民中分别抽取多少人?
(Ⅱ)设从甲小区抽取的居民为
,丙小区抽取的居民为
.现从甲小区和丙小区已抽取的居民中随机抽取2人接受问卷调查.
(ⅰ)试用所给字母列举出所有可能的抽取结果;
(ⅱ)设
为事件“抽取的2人来自不同的小区”,求事件
发生的概率.
(Ⅰ)应从甲小区和丙小区的居民中分别抽取多少人?
(Ⅱ)设从甲小区抽取的居民为


(ⅰ)试用所给字母列举出所有可能的抽取结果;
(ⅱ)设


2018年11月5日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会,本次博览会包括企业产品展、国家贸易投资展,其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:
备受关注百分比指:一个展区中受到所有相关人士关注
简称备受关注
的企业数与该展区的企业数的比值.
(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.
展区类型 | 智能及高端装备 | 消费电子及家电 | 汽车 | 服装服饰及日用消费品 | 食品及农产品 | 医疗器械及医药保健 | 服务贸易 |
展区的企业数![]() ![]() | 400 | 60 | 70 | 650 | 1670 | 300 | 450 |
备受关注百分比 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
备受关注百分比指:一个展区中受到所有相关人士关注


(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.
甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为
,再由乙猜甲刚才所想的数字,把乙猜的数字记为
,其中
,若
,就称甲乙“心有灵屏”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |
某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到如图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,

(1)根据以上资料完成下面的
列联表,若据此数据算得
,则在犯错误的概率不超过
的前提下,你是否认为“满意与否”与“性别”有关?

(2)根据这次的调查数据估计用户对该公司的产品“满意”的概率;
(3)该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

(1)根据以上资料完成下面的




(2)根据这次的调查数据估计用户对该公司的产品“满意”的概率;
(3)该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.
某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示
(1)如果随机调查这个班的一名学生,求事件
抽到不积极参加班级工作且学习积极性不高的学生的概率;
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,请用字母代表不同的学生列举出抽取的所有可能结果;
(3)在(2)的条件下,求事件
两名学生中恰有1名男生的概率.
| 积极参加班级工作 | 不积极参加班级工作 | 合计 |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,求事件

(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,请用字母代表不同的学生列举出抽取的所有可能结果;
(3)在(2)的条件下,求事件

某市公租房的房源位于
四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙两位申请人中:
(1)求所有的申请情况总数;
(2)求甲、乙两位申请同一片区房源的概率.

(1)求所有的申请情况总数;
(2)求甲、乙两位申请同一片区房源的概率.
为了解春季昼夜温差大小与某种子发芽多少之间的关系,分别记录了4月1日至4月5日每天的昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:
(1)从这5天中任选2天,求至少有一天种子发芽数超过25颗的概率;
(2)请根据4月1日、4月2日、4月3日这3天的数据,求出
关于
的线性回归方程
;
(3)根据(2)中所得的线性回归方程,预测温差为
时,种子发芽的颗数.
参考公式:
,
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差![]() | 12 | 11 | 13 | 10 | 8 |
发芽率![]() | 26 | 25 | 30 | 23 | 16 |
(1)从这5天中任选2天,求至少有一天种子发芽数超过25颗的概率;
(2)请根据4月1日、4月2日、4月3日这3天的数据,求出



(3)根据(2)中所得的线性回归方程,预测温差为

参考公式:


设集合
,
,分别从集合
和
中随机抽取一个数
和
,确定平面上的一个点
,记“点
满足
”为事件
,若事件
的概率最大,则
的可能值为( )













A.2 | B.3 | C.1和3 | D.2和4 |