为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期
4月1日
4月7日
4月15日
4月21日
4月30日
温差
10
11
13
12
8
发芽数
23
25
30
26
16
 
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程.
(参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99
某学校上学期的期中考试后,为了了解某学科的考试成绩,根据学生的考试成绩利用分层抽样抽取名学生的成绩进行统计(所有学生成绩均不低于分),得到学生成绩的频率分布直方图如图,回答下列问题;
(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;
(Ⅱ)已知本次全校考试成绩在内的人数为,试确定全校的总人数;
(Ⅲ)若本次考试抽查的人中考试成绩在内的有名女生,其余为男生,从中选择两名学生,求选择一名男生与一名女生的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
为维护交通秩序,防范电动自行车被盗,天津市公安局决定,开展二轮电动自行车免费登记、上牌照工作.电动自行车牌照分免费和收费(安装防盗装置)两大类,群众可以 自愿选择安装.已知甲、乙、丙三个不同类型小区的人数分别为15000,15000,20000.交管部门为了解社区居民意愿,现采用分层抽样的方法从中抽取10人进行电话访谈.
(Ⅰ)应从甲小区和丙小区的居民中分别抽取多少人?
(Ⅱ)设从甲小区抽取的居民为,丙小区抽取的居民为.现从甲小区和丙小区已抽取的居民中随机抽取2人接受问卷调查.
(ⅰ)试用所给字母列举出所有可能的抽取结果;
(ⅱ)设为事件“抽取的2人来自不同的小区”,求事件发生的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
2018年11月5日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会,本次博览会包括企业产品展、国家贸易投资展,其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:
展区类型
智能及高端装备
消费电子及家电
汽车
服装服饰及日用消费品
食品及农产品
医疗器械及医药保健
服务贸易
展区的企业数
400
60
70
650
1670
300
450
备受关注百分比







 
备受关注百分比指:一个展区中受到所有相关人士关注简称备受关注的企业数与该展区的企业数的比值.
(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;
(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲乙“心有灵屏”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为(    )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到如图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,

(1)根据以上资料完成下面的列联表,若据此数据算得,则在犯错误的概率不超过的前提下,你是否认为“满意与否”与“性别”有关?

(2)根据这次的调查数据估计用户对该公司的产品“满意”的概率;
(3)该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示
 
积极参加班级工作
不积极参加班级工作
合计
学习积极性高
18
7
25
学习积极性不高
6
19
25
合计
24
26
50
 
(1)如果随机调查这个班的一名学生,求事件抽到不积极参加班级工作且学习积极性不高的学生的概率;
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,请用字母代表不同的学生列举出抽取的所有可能结果;
(3)在(2)的条件下,求事件两名学生中恰有1名男生的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
某市公租房的房源位于四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙两位申请人中:
(1)求所有的申请情况总数;
(2)求甲、乙两位申请同一片区房源的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
为了解春季昼夜温差大小与某种子发芽多少之间的关系,分别记录了4月1日至4月5日每天的昼夜温差与每天100颗种子浸泡后的发芽数,得到如下表格:
日期
4月1日
4月2日
4月3日
4月4日
4月5日
温差
12
11
13
10
8
发芽率
26
25
30
23
16
 
(1)从这5天中任选2天,求至少有一天种子发芽数超过25颗的概率;
(2)请根据4月1日、4月2日、4月3日这3天的数据,求出关于的线性回归方程
(3)根据(2)中所得的线性回归方程,预测温差为时,种子发芽的颗数.
参考公式:
当前题号:9 | 题型:解答题 | 难度:0.99
设集合,分别从集合中随机抽取一个数,确定平面上的一个点,记“点满足”为事件,若事件的概率最大,则的可能值为(  )
A.2B.3C.1和3D.2和4
当前题号:10 | 题型:单选题 | 难度:0.99