- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断事件是否为基本事件
- + 写出基本事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,写出所有的基本事件;
(2)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.
(1)从袋中随机取两个球,写出所有的基本事件;
(2)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.
某厂为了评估某种零件生产过程的情况,制定如下规则:若零件的尺寸在
,则该零件的质量为优秀,生产过程正常;若零件的尺寸在
且不在
,则该零件的质量为良好,生产过程正常;若零件的尺寸在
且不在
,则该零件的质量为合格,生产过程正常;若零件的尺寸不在
,则该零件不合格,同时认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,(其中
为样本平均数,
为样本标准差)下面是检验员从某一天生产的一批零件中随机抽取的20个零件尺寸的茎叶图(单位:cm)经计算得
,其中
为抽取的第
个零件的尺寸,
.

(1)利用该样本数据判断是否需对当天的生产过程进行检查;
(2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过
的概率;
(3)剔除该样本中不在
的数据,求剩下数据的平均数
和标准差
(精确到0.01)
参考数据:
,
,
,













(1)利用该样本数据判断是否需对当天的生产过程进行检查;
(2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过

(3)剔除该样本中不在



参考数据:




为了解某中学学生对数学学习的情况,从该校抽了
名学生,分析了这
名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

(1)求频率分布直方图中
的值;
(2)根据频率分布直方图估计该组数据的中位数(精确到
);
(3)在这
名学生的数学成绩中,从成绩在
的学生中任选
人,求次
人的成绩都在
中的概率.



(1)求频率分布直方图中

(2)根据频率分布直方图估计该组数据的中位数(精确到

(3)在这





从1,2,3,4,5,6这六个数字中,每次任意取出一个数字,有放回地取两次.设事件
为“第一次取出的数字为4",B为“两次取出的数字之和等于7”.
(1)用合适的符号写出样本间;
(2)判断A与B是否相互独立.

(1)用合适的符号写出样本间;
(2)判断A与B是否相互独立.
从1,2,3,…,10中任选一个数,这个试验的样本空间为_______,“它是偶数”这一事件包含的基本事件个数为_________.
小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一次骰子,向上的点数记为x,小李再掷一次骰子,向上的点数记为y.
(1)在平面直角坐标系
中,以
为坐标的点共有几个?
(2)规定:若
,则小王赢;若
,则小李赢,其他情况不分输赢,试问这个游戏规则公平吗?请说明理由.
(1)在平面直角坐标系


(2)规定:若


从两名男生(记为
和
)、两名女生(记为
和
)中任意抽取两人.
(1)分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间.
(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率.




(1)分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间.
(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率.