- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- + 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校
位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织
位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给
位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )
A.0.95 | B.0.97 | C.0.92 | D.0.08 |
一批产品次品率为4%,正品中一等品率为75%.现从这批产品中任取一件,恰好取到一等品的概率为( )
A.0.75 | B.0.71 | C.0.72 | D.0.3 |
现有6名奥运会志愿者,其中志愿者
通晓日语,
通晓俄语,
通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求
被选中的概率;
(2)求
和
不全被选中的概率;
(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到
的概率.



(1)求

(2)求


(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到

某工程设备租赁公司为了调查A,B两种挖掘机的出租情况,现随机抽取了这两种挖掘机各100台,分别统计了每台挖掘机在一个星期内的出租天数,统计数据如下表:

(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.

(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.
为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用
表示所选女“优秀警员”的人数,试求
的分布列和数学期望.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用



一个袋中装有1红、2白和2黑共5个小球,这5个球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为__________.
如图, A, B, C表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________

甲射击命中目标的概率是
,乙射击命中目标的概率是
,丙射击命中目标的概率是
.现在三人同时射击目标,则目标被击中的概率为____________.


