- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- + 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学经市人民政府批准建分校,工程从2010年底开工到2013年底完工,工程分三期完成.经过初步招投标淘汰后,确定只由甲、乙两家建筑公司承建,且每期工程由两公司之一独立承建,必须在建完前一期工程后再建后一期工程.已知甲公司获得第一期、第二期、第三期工程承包权的概率分别为
.
(1)求甲、乙两公司各至少获得一期工程的概率;
(2)求甲公司获得工程期数
的分布列和数学期望
.

(1)求甲、乙两公司各至少获得一期工程的概率;
(2)求甲公司获得工程期数


某交往式计算机有20个终端,这些终端由各个单位独立操作,使用率均为0.8,则20个终端中至少有一个没有使用的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙、丙三人分别参加三种类型的公务员考试,合格的概率分别是
、
、
,则三人中恰有两人合格的概率和三人中至少有一人合格的概率分别是( )



A.![]() | B.![]() | C.![]() | D.![]() |
某交互式计算机有20个终端,这些终端由各个单位独立操作,使用率均为0.8,则20个终端中至少有一个没有使用的概率为( )
A.0.220 | B.0.820 | C.1﹣0.820 | D.1﹣0.220 |
如图右所示,棋盘式街道中,某人从A地出发到达B地.若限制行进的方向只能向右或向上,那么不经过E地的概率为______________

甲、乙两人同时参加某电台举办的有奖知识问答.约定甲,乙两人分别回答4个问题,答对一题得1分,不答或答错得0分,4个问题结束后以总分决定胜负.甲,乙回答正确的概率分别是


(1) 甲回答4次,至少得1分的概率;
(2) 甲恰好以3分的优势取胜的概率.
现有三种基本电子模块
,电流能通过
的概率都是P,电流能否通过各模块相互独立.已知
中至少有一个能通过电流的概率为0.999.现由该电子模块组装成某预警系统M(如图所示),针对系统M而言,只要有电流通过该系统就能正常工作.

(1)求P值
(II)求预警系统M正常工作的概率




(1)求P值
(II)求预警系统M正常工作的概率
某单位为绿化环境,移栽了甲、乙两种大树各2株,设甲,乙两种大树移栽的成活率分别为
和
,求移栽的4株大树中:
(1)至少1株成活的概率;
(2)两种大树各成活1株的概率.


(1)至少1株成活的概率;
(2)两种大树各成活1株的概率.
书架上有10本不同的书,其中语文书4本,数学书3本,英语书3本,现从中取出3本书.求:
( 1 )3本书中至少有1本是数学书的概率;
( 2 )3本书不全是同科目书的概率.
( 1 )3本书中至少有1本是数学书的概率;
( 2 )3本书不全是同科目书的概率.
某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用
表示4名乘客在第4层下电梯的人数,求
的分布列和数学期望.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用

