- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- + 对立事件
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(多选题)从装有大小和形状完全相同的5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是( )
A.至少有1个红球与都是红球 | B.至少有1个红球与至少有1个白球 |
C.恰有1个红球与恰有2个红球 | D.至多有1个红球与恰有2个红球 |
某产品外甲、乙、丙三级,其中丙级为次品.若生产中出现乙级产品的概率为0.03,出现丙级产品的概率为0.01,则对该产品抽查一件抽到正品的概率为( )
A.0.09 | B.097 | C.0.99 | D.0.96 |
受轿车在保修期内的维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,甲品牌车保修期为3年,乙品牌车保修期为2年,现从该厂已售出的两种品牌轿车中分别随机抽取50辆,统计出在保修期内出现故障的车辆数据如下:
(1)从该厂生产的甲种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(2)从该厂生产的乙种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率.(将频率视为概率)
品牌 | 甲 | 乙 | |||||
首次出现故障 的时间x(年) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
轿车数量(辆) | 2 | 1 | 3 | 44 | 2 | 3 | 45 |
(1)从该厂生产的甲种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(2)从该厂生产的乙种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率.(将频率视为概率)
某县城有甲、乙两种报纸供居民订阅,记A为“只订甲报”,B为“只订乙报”,C为“至少订一种报纸”,D为“至多订一种报纸”,E为“一种报纸也没订”,F为“两种报纸都订”.根据上述事件回答下列问题:
(1)请列举出包含关系的事件;
(2)用和事件的定义判断上述事件中哪些是和事件;
(3)从上述事件中找出几对互斥事件和对立事件.
(1)请列举出包含关系的事件;
(2)用和事件的定义判断上述事件中哪些是和事件;
(3)从上述事件中找出几对互斥事件和对立事件.
某单位组织
个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界
个景区中任选一个.
(1)求
个景区都有部门选择的概率;
(2)求恰有
个景区有部门选择的概率.


(1)求

(2)求恰有

某商场有甲、乙两种电子产品可供顾客选购.记事件A为“只买甲产品”,事件B为“至少买一种产品”,事件C为“至多买一种产品”,事件D为“不买甲产品”,事件E为“一种产品也不买”,事件F为“只买乙产品”.判断下列事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E;(6)A与F.
(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E;(6)A与F.
在某次人才招聘会上,假定某毕业生赢得甲公司面试机会的概率为
,赢得乙、丙两公司面试机会的概率均为
,且三家公司是否让其面试是相互独立的,则该毕业生只赢得甲、乙两家公司面试机会的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件A)的概率为
,取到方片牌(事件B)的概率是
,则取到红色牌(事件C)的概率和取到黑色牌(事件D)的概率分别是( )


A.![]() | B.![]() | C.![]() | D.![]() |
利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A为“是一等品”,B为“是合格品”,C为“是不合格品”,则下列结果正确的是( ).
A.![]() | B.![]() | C.![]() | D.![]() |