- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断所给事件是否是互斥关系
- + 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为
,乙组能使生物成活的概率为
,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)若甲乙两小组各进行2次试验,设试验成功的总次数为
,求
的期望.


(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)若甲乙两小组各进行2次试验,设试验成功的总次数为


某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过
关者奖励
件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.




(Ⅰ)求小明在这十次游戏中所得奖品数的均值;
(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;
(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.

某工程设备租赁公司为了调查A,B两种挖掘机的出租情况,现随机抽取了这两种挖掘机各100台,分别统计了每台挖掘机在一个星期内的出租天数,统计数据如下表:

(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.

(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.
为弘扬中华传统文化,某单位举行了诗词大赛,经过初赛,最终甲乙两人进行决赛,争夺冠亚军,决赛规则如下:①比赛共设有五道题;②双方轮流答题,每次回答一道,两人答题的先后顺序通过抽签决定;③若答对,自已得1分;若答错,则对方得1分;④先得3分者获胜.
已知甲、乙各参加了三场初赛,答题情况统计如下表:
以甲、乙初赛三场答题的平均正确率作为他们决赛答题正确的概率,且他们每次答题的结果相互独立,
(1)若甲先答题,求甲
获得冠军的概率;
(2)若甲先答题,求甲获得冠军的概率;
(3)甲获得冠军是否与谁先答题有关?(不要求写过程)
已知甲、乙各参加了三场初赛,答题情况统计如下表:
| 第一场 | 第二场 | 第三场 |
甲 | 8对2错 | 7对3错 | 9对1错 |
乙 | 7对3错 | 10对0错 | 8对2错 |
以甲、乙初赛三场答题的平均正确率作为他们决赛答题正确的概率,且他们每次答题的结果相互独立,
(1)若甲先答题,求甲

(2)若甲先答题,求甲获得冠军的概率;
(3)甲获得冠军是否与谁先答题有关?(不要求写过程)
一个袋中装有1红、2白和2黑共5个小球,这5个球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为__________.
甲、乙两人各进行3次射击,甲每次击中目标的概率为
,乙每次击中目标的概率为
求:(1)甲恰好击中目标2次的概率;(2)乙至少击中目标2次的概率;


(3)乙恰好比甲多击中目标2次的概率
甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为
,乙能攻克的概率为
,丙能攻克的概率为
.
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励
万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金
万元;若只有2人攻克,则奖金奖给此二人,每人各得
万元;若三人均攻克,则奖金奖给此三人,每人各得
万元。设甲得到的奖金数为X,求X的分布列和数学期望。



(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励




甲、乙两个箱子中装有大小相同的小球,甲箱中有2个红球和2个黑球,乙箱中装有2个黑球和3个红球,现从甲箱和乙箱中各取一个小球并且交换.
(1)求交换后甲箱中刚好有两个黑球的概率.
(2)设交换后甲箱中黑球的个数为
,求
的分布列和数学期望.
(1)求交换后甲箱中刚好有两个黑球的概率.
(2)设交换后甲箱中黑球的个数为

