- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断所给事件是否是互斥关系
- + 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为
,乙每次投中的概率为
,每人分别进行三次投篮.
(1)记甲投中的次数为
,求
的分布列;
(2)求乙至多投中2次的概率;
(3)求乙恰好比甲多投进2次的概率.


(1)记甲投中的次数为


(2)求乙至多投中2次的概率;
(3)求乙恰好比甲多投进2次的概率.
某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作时,部件正常工作.设三个电子元件的使用寿命(单位:
)均服从正态分布
,且各个元件能否正常工作相互独立,求该部件的使用寿命超过1000h的概率.



为迎接
年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过
小时免费,超过
小时的部分每小时收费标准为
元(不足1小时的部分按
小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过
小时离开的概率分别为
、
;
小时以上且不超过
小时离开的概率分别为
、
;两人滑雪时间都不会超过
小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量
(单位:元),求
的分布列与数学期望
,方差
.













(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量




从甲地到乙地要经过
个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为
、
、
.
(1)记
表示一辆车从甲地到乙地遇到红灯的个数,求随机变量
的分布列和数学期望;
(2)若有
辆车独立地从甲地到乙地,求这
辆车共遇到
个红灯的概率.




(1)记


(2)若有



甲、乙两人参加普法知识竞赛,共有5题,选择题3个,判断题2个,甲、乙两人各抽一题.
(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
已知数学考试中,李明成绩高于90分的概率为0.3,不低于60分且不高于90分的概率为0.5,求:
(1)李明成绩不低于60分的概率;
(2)李明成绩低于60分的概率.
(1)李明成绩不低于60分的概率;
(2)李明成绩低于60分的概率.
某商场对购买一定量的商品的顾客进行抽奖活动,活动规则是:一个袋中有大小、形状相同的红、黑球各一个,顾客从中依次有放回地随机摸取3次,每次摸取一个球,摸到红球时得2分,摸到黑球时得1分,顾客3次摸球所得总分超过4分获得奖品.
问题:
(1)如何确定此试验的样本空间?
(2)设“顾客获奖”为事件A,则A中含有哪些样本点?
(3)如何求出事件
“顾客获奖”的概率?
问题:
(1)如何确定此试验的样本空间?
(2)设“顾客获奖”为事件A,则A中含有哪些样本点?
(3)如何求出事件

在一次随机试验中,三个事件
的概率分别是0.2,0.3,0.5,则下列说法正确的是_____________ .
①
与
是互斥事件,也是对立事件;
②
是必然事件;
③
;
④
.

①


②

③

④
