- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从一批产品中取出三件产品,设事件
为“三件产品全不是次品”,事件
为“三件产品全是次品”,事件
为“三件产品不全是次品”,则下列结论正确的是( )



A.事件![]() ![]() | B.事件![]() ![]() |
C.任何两个事件均互斥 | D.任何两个事件均不互斥 |
设A,B,C是三个事件,给出下列四个事件:
(Ⅰ)A,B,C中至少有一个发生;
(Ⅱ)A,B,C中最多有一个发生;
(Ⅲ)A,B,C中至少有两个发生;
(Ⅳ)A,B,C最多有两个发生;
其中相互为对立事件的是( )
(Ⅰ)A,B,C中至少有一个发生;
(Ⅱ)A,B,C中最多有一个发生;
(Ⅲ)A,B,C中至少有两个发生;
(Ⅳ)A,B,C最多有两个发生;
其中相互为对立事件的是( )
A.Ⅰ和Ⅱ | B.Ⅱ和Ⅲ | C.Ⅲ和Ⅳ | D.Ⅳ和Ⅰ |
根据某省的高考改革方案,考生应在3门理科学科(物理、化学、生物)和3门文科学科(历史、政治、地理)的6门学科中选择3门学科参加考试.根据以往统计资料,1位同学选择生物的概率为0.5,选择物理但不选择生物的概率为0.2,考生选择各门学科是相互独立的.
(1)求1位考生至少选择生物、物理两门学科中的1门的概率;
(2)某校高二段400名学生中,选择生物但不选择物理的人数为140,求1位考生同时选择生物、物理两门学科的概率.
(1)求1位考生至少选择生物、物理两门学科中的1门的概率;
(2)某校高二段400名学生中,选择生物但不选择物理的人数为140,求1位考生同时选择生物、物理两门学科的概率.
从一批产品(其中正品、次品都多于两件)中任取两件,观察正品件数和次品件数,下列事件是互斥事件的是()
①恰有一件次品和恰有两件次品;
②至少有一件次品和全是次品;
③至少有一件正品和至少有一件次品;
④至少有一件次品和全是正品.
①恰有一件次品和恰有两件次品;
②至少有一件次品和全是次品;
③至少有一件正品和至少有一件次品;
④至少有一件次品和全是正品.
A.①② | B.①④ | C.③④ | D.①③ |
生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为
和
,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是
,则
_______.




从装有红球、黑球和白球的口袋中摸出一个球,若摸出的球是红球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球或黑球的概率是()
A.0.35 | B.0.65 | C.0.1 | D.0.6 |
一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于
的是 ( )

A.P(0<X≤2) | B.P(X≤1) | C.P(X=1) | D.P(X=2) |