- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年1月26日,甘肃省人民政府办公厅发布《甘肃省关于餐饮业质量安全提升工程的实施意见》,卫生部对16所大学食堂的“进货渠道合格性”和“食品安全”进行量化评估.满10分者为“安全食堂”,评分7分以下的为“待改革食堂”.评分在4分以下考虑为“取缔食堂”,所有大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:

(1)现从16所大学食堂中随机抽取3个,求至多有1个评分不低于9分的概率;
(2)以这16所大学食堂评分数据估计大学食堂的经营性质,若从全国的大学食堂任选3个,记
表示抽到评分不低于9分的食堂个数,求
的分布列及数学期望.

(1)现从16所大学食堂中随机抽取3个,求至多有1个评分不低于9分的概率;
(2)以这16所大学食堂评分数据估计大学食堂的经营性质,若从全国的大学食堂任选3个,记


口袋中有若干红球、黄球与蓝球,若摸出红球的概率为0.4,摸出红球或黄球的概率为0.62,则摸出红球或蓝球的概率为( )
A.0.22 | B.0.38 | C.0.6 | D.0.78 |
在2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并同时超过对方2分时,才胜1局;在决胜局(第五局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜.在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲乙两队进行排球比赛:
(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来两队赢得每局比赛的概率均为
,求甲队最后赢得整场比赛的概率;
(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为
,乙发球时甲赢1分的概率为
,得分者获得下一个球的发球权.设两队打了
个球后甲赢得整场比赛,求x的取值及相应的概率p(x).
(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来两队赢得每局比赛的概率均为

(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为



将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过2,事件B表示向上的一面出现的点数不小于3,事件C表示向上的一面出现奇数点,则( )
A.A与B是对立事件 | B.A与B是互斥而非对立事件 |
C.B与C是互斥而非对立事件 | D.B与C是对立事件 |
某入伍新兵在打靶训练中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )
A.至多有一次中靶 | B.2次都中靶 |
C.2次都不中靶 | D.只有一次中靶 |
甲乙两队正在角逐排球联赛的冠军,在刚刚结束的前三局比赛中,甲队2胜1负暂时领先,若规定先胜三局者即为本次联赛冠军,已知两队在每局比赛中获胜的概率均为
,且各局比赛结果相互独立,则甲队最终成为本次排球联赛冠军的概率为________.

投掷一枚图钉,设针尖向上的概率为0.6,那么针尖向下的概率为0.4.若连续掷一枚图钉3次,则至少出现2次针尖向上的概率为_____________.
已知下列说法:
①事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大
②事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小
③互斥事件一定是对立事件,对立事件不一定是互斥事件
④互斥事件不一定是对立事件,对立事件一定是互斥事件
其中正确的个数是( )
①事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大
②事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小
③互斥事件一定是对立事件,对立事件不一定是互斥事件
④互斥事件不一定是对立事件,对立事件一定是互斥事件
其中正确的个数是( )
A.1 | B.2 | C.3 | D.4 |
袋中共有5个小球,其中3个红球、2个白球.现从中不放回地摸出3个小球,则下列各对事件为互斥事件的是( )
A.“恰有1个红球”和“恰有2个白球” |
B.“至少有1个红球”和“至少有1个白球” |
C.“至多有1个红球”和“至多有1个白球” |
D.“至少有1个红球”和“至多有1个白球” |
袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是( )
A.“至少有一个黑球”和“没有黑球” | B.“至少有一个白球”和“至少有一个红球” |
C.“至少有一个白球”和“红球黑球各有一个” | D.“恰有一个白球”和“恰有一个黑球” |