- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥但不对立的两
个事件是( )
个事件是( )
A.至少有1名男生与全是女生 |
B.至少有1名男生与全是男生 |
C.至少有1名男生与至少有1名女生 |
D.恰有1名男生与恰有2名女生 |
甲、乙两人各进行3次射击,甲每次击中目标的概率为
,乙每次击中目标的概率为
.
(1)求乙至多击中目标2次的概率;
(2)求甲恰好比乙多击中目标2次的概率.


(1)求乙至多击中目标2次的概率;
(2)求甲恰好比乙多击中目标2次的概率.
甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
支付宝自助付款可以实现人像识别身份认证和自动支付业务,于是出现了无人超市.无人超市的出现大大方便了顾客,也为商家节约了人工成本.某超市对随机进入无人超市的100名顾客的付款时间与购物金额进行了统计,统计数据如图所示:(时间单位:秒,付款金额RMB:元)

(1)用统计中的频率代表一位顾客随机进店消费付款时间的概率,试求该顾客进店购物结算时所用时间的期望;
(2)若一位顾客在结算时,前面恰有3个人正在排队,求该顾客等候时间不少于2分钟的概率.

(1)用统计中的频率代表一位顾客随机进店消费付款时间的概率,试求该顾客进店购物结算时所用时间的期望;
(2)若一位顾客在结算时,前面恰有3个人正在排队,求该顾客等候时间不少于2分钟的概率.
某校高二年级航模兴趣小组共有10人,其中有女生3人,现从这10人中任意选派2人去参加一项航模比赛,则有女生参加此项比赛的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某中学的高二(1)班男同学有
名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出
名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;



(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出

口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是( )
A.0.42 | B.0.28 | C.0.7 | D.0.3 |
某地拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家计了一个招标方案:两家公司从6个招标问题中随机抛取3个问题,已知这6个问中,甲公司可正确回答其中的4道题,而乙公司能正确回答每道题目的概率均为
,且甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(I)求甲、乙两家公司共答对2道题的概率;
(II)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.

(I)求甲、乙两家公司共答对2道题的概率;
(II)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.
某球迷为了解
两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:
球队:122 110 105 105 109 101 107 129 115 100
114 118 118 104 93 120 96 102 105 83
球队:114 114 110 108 103 117 93 124 75 106
91 81 107 112 107 101 106 120 107 79
(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);
(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:
记事件
“
球队的攻击能力等级高于
球队的攻击能力等级”.假设两支球队的攻击能力相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求
的概率.


114 118 118 104 93 120 96 102 105 83

91 81 107 112 107 101 106 120 107 79
(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);
(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:
球队所得分数 | 低于100分 | 100分到119分 | 不低于120分 |
攻击能力等级 | 较弱 | 较强 | 很强 |
记事件



