- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某人向一目标射击4次,每次击中目标的概率为
,该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比.
(1)设X表示目标被击中的次数,求X的分布列;
(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).

(1)设X表示目标被击中的次数,求X的分布列;
(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).
某家公司有三台机器A1,A2,A3生产同一种产品,生产量分别占总产量的
,且其产品的不良率分别各占其产量的2.0%,1.2%,1.0%,任取此公司的一件产品为不良品的概率为________ ,若已知此产品为不良品,则此产品由A1所生产出的概率为_______ .

从装有
个黑球、
个白球的袋中任取
个球,若事件
为“所取的
个球中至多有
个白球”,则与事件
互斥的事件是( )







A.所取的![]() |
B.所取的![]() ![]() ![]() |
C.所取的![]() |
D.所取的![]() ![]() ![]() |
一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,则下列选项中两个事件互斥而不对立的是( )
A.甲和乙 | B.甲和丙 | C.乙和丙 | D.乙和丁 |
从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]cm的概率为0.5,那么该同学的身高超过175cm的概率为 ( )
A.0.8 | B.0.7 | C.0.3 | D.0.2 |
给出如下三对事件:
①某人射击1次,“射中7环”与“射中8环”;
②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;
③从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.
其中属于互斥事件的个数为
①某人射击1次,“射中7环”与“射中8环”;
②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;
③从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.
其中属于互斥事件的个数为
A.0 | B.1 | C.2 | D.3 |
学生李明上学要经过
个路口,前三个路口遇到红灯的概率均为
,第四个路口遇到红灯的概率为
,设在各个路口是否遇到红灯互不影响,则李明从家到学校恰好遇到一次红灯的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:
(1)至多有2人排队等候的概率是多少?
(2)至少有3人排队等候的概率是多少?
排队人数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排队等候的概率是多少?
(2)至少有3人排队等候的概率是多少?
一张储蓄卡的密码共有
位数字,每位数字都可以从
中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过
次就按对的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
某地区的年降水量在下列范围内的概率如下表所示:
(1)求年降水量在[100,200)(mm)范围内的概率;
(2)求年降水量在[150,300)(mm)范围内的概率.
年降水量/mm | [100,150) | [150,200) | [200,250) | [250,300) |
概率 | 0.12 | 0.25 | 0.16 | 0.14 |
(1)求年降水量在[100,200)(mm)范围内的概率;
(2)求年降水量在[150,300)(mm)范围内的概率.