- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学校对校园进行绿化,移栽香樟和桂花两种大树各2株,若香樟的成活率为
,桂花的成活率为
,假设每棵树成活与否是相互独立的.求:
(Ⅰ)两种树各成活一株的概率;
(Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.


(Ⅰ)两种树各成活一株的概率;
(Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.
某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( )
A.恰有1名男生与恰有2名女生 |
B.至少有1名男生与全是男生 |
C.至少有1名男生与至少有1名女生 |
D.至少有1名男生与全是女生 |
下列叙述错误的是( )
A.若事件A发生的概率为P(A),则0≤P(A)≤1 |
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件 |
C.两个对立事件的概率之和为1 |
D.对于任意两个事件A和B,都有P(A∪B)=P(A)+P(B) |
在不透明的盒子中有大小、形状相同的一些黑球、白球和黄球,从中摸出一个球,摸出黑球的概率为0.42,摸出黄球的概率为0.18,则摸出的球是白球的概率为_____ ,摸出的球不是黄球的概率为_____ ,摸出的球是黄球或者是黑球的概率为_____ .
一组试验仅有四个互斥的结果A,B,C,D,则下面各组概率可能成立的是( )
A.P(A)=0.31,P(B)=0.27,P(C)=0.28,P(D)=0.35 |
B.P(A)=0.32,P(B)=0.27,P(C)=0.06,P(D)=0.47 |
C.P(A)=![]() ![]() ![]() ![]() |
D.P(A)=![]() ![]() ![]() ![]() |
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.
(1)求该地某车主至少购买甲、乙两种保险中的1种的概率;
(2)求该地某车主甲、乙两种保险都不购买的概率.
(1)求该地某车主至少购买甲、乙两种保险中的1种的概率;
(2)求该地某车主甲、乙两种保险都不购买的概率.
若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是( )
A.[0,0.9] | B.[0.1,0.9] | C.(0,0.9] | D.[0,1] |
100件产品中有10件次品,从中任取7件,至少有5件次品的概率可以看成三个互斥事件的概率和,则这三个互斥事件分别是_____ ,_____ 和_____ .
某家庭电话,打进的电话响第一声时被接的概率为
,响第二声时被接的概率为
,响第三声时被接的概率为
,响第四声时被接的概率为
,则电话在响前四声内被接的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |