- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国乒乓球队备战里约奥运会热身赛暨选拔赛于2016年7月14日在山东威海开赛.种子选手
与
,
,
三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,
获胜的概率分别为
,
,
,且各场比赛互不影响.
(1)若
至少获胜两场的概率大于
,则
入选征战里约奥运会的最终大名单,否则不予入选,问
是否会入选最终的大名单?
(2)求
获胜场数
的分布列和数学期望.








(1)若




(2)求


甲袋中有5个红球,2个白球和3个黑球,乙袋中有4个红球,3个白球和3个黑球.先从甲袋中随机取出一球放入乙袋,分别以A1,A2和A3表示由甲袋取出的球是红球,白球和黑球的事件;再从乙袋中随机取出一球,以B表示由乙袋取出的球是红球的事件.则下列结论
①P(B)=
;
②P(B|A1)=
;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件.
其中正确的是 (写出所有正确结论的编号).
①P(B)=

②P(B|A1)=

③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件.
其中正确的是 (写出所有正确结论的编号).
某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对
名出租车司机进行调查,调查问卷共
道题,答题情况如下表:
(I)如果出租车司机答对题目大于等于
,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;
(II)从答对题目数小于
的出租车司机中选出
人做进一步的调查,求选出的
人中至少有一名女出租车司机的概率.


答对题目数 | ![]() | ![]() | ![]() | ![]() |
女 | ![]() | ![]() | ![]() | ![]() |
男 | ![]() | ![]() | ![]() | ![]() |
(I)如果出租车司机答对题目大于等于

(II)从答对题目数小于



甲、乙两人在罚球线投球命中的概率分别为
与
,投中得1分
,投不中得0分.
(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.



(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.
从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个,(1)3个都是正品;(2)至少有1个是次品;(3)3个都是次品;(4)至少有1个是正品,上列四个事件中为必然事件的是________ (写出所有满足要求的事件的编号)
“星光大道”是观众喜爱的央视栏目.现有
位周冠军
和甲、乙两位挑战者参加月冠军比赛,比赛规则是:第一轮甲、乙两位挑战者从
位周冠军中各选一位进行比赛,胜者进入第二轮比赛,未被选中的周冠军直接进入第二轮比赛;第二轮比赛从
位选手中淘汰一位,胜者进入第三轮比赛;第三轮比赛胜者为月冠军.每位选手被淘汰的可能性相同.
(1)求周冠军
和挑战者甲、乙进行第一轮比赛,且至少有一位挑战者进入第二轮比赛的概率;
(2)求月冠军是挑战者的概率.




(1)求周冠军

(2)求月冠军是挑战者的概率.