- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:
根据上表信息解答以下问题:
(Ⅰ)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)内有零点”的事件为A,求A发生的概率P;
(Ⅱ)从该班级任选两名同学,用
表示这两人参加社会实践次数之差的绝对值,求随机变量
的分布列及数学期望E
.
参加次数 | 0 | 1 | 2 | 3 |
人数 | 0.1 | 0.2 | 0.4 | 0.3 |
根据上表信息解答以下问题:
(Ⅰ)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)内有零点”的事件为A,求A发生的概率P;
(Ⅱ)从该班级任选两名同学,用



从甲、乙两名射击运动员中选一名参加全国射击比赛,已知选拨赛中,甲射击30次,命中15次;乙射击40次,命中18次.你认为应选谁参加比赛?
做投掷2颗骰子试验,用
表示点P的坐标,其中x表示第1颗骰子出现的点数,y表示第2颗骰子出现的点数.
(1)求点P在直线
上的概率
(2)求点P不在直线
上的概率
(3)求点P的坐标
满足
的概率

(1)求点P在直线

(2)求点P不在直线

(3)求点P的坐标


某果园要用三辆汽车将一批水果从所在城市E运至销售城市F,已知从城市E到城市F有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为
,走公路Ⅱ堵车的概率为
,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.
(Ⅰ)求甲、乙两辆汽车中恰有一辆堵车的概率;
(Ⅱ)求三辆汽车中至少有两辆堵车的概率.


(Ⅰ)求甲、乙两辆汽车中恰有一辆堵车的概率;
(Ⅱ)求三辆汽车中至少有两辆堵车的概率.
给出以下三个命题:
①将一枚硬币抛掷两次,记事件A:两次都出现正面,事件B:两次都出现反面,则事件A与事件B是对立事件;②在命题①中,事件A与事件B是互斥事件;③在10件产品中有3件是次品,从中任取3件,记事件A:所取3件中最多有2件是次品,事件B:所取3件中至少有2件是次品,则事件A与事件B是互斥事件.其中真命题的个数是()
①将一枚硬币抛掷两次,记事件A:两次都出现正面,事件B:两次都出现反面,则事件A与事件B是对立事件;②在命题①中,事件A与事件B是互斥事件;③在10件产品中有3件是次品,从中任取3件,记事件A:所取3件中最多有2件是次品,事件B:所取3件中至少有2件是次品,则事件A与事件B是互斥事件.其中真命题的个数是()
A.0 | B.1 | C.2 | D.3 |
从装有
个白球和
个蓝球的口袋中任取
个球,那么对立的两个事件是()



A.“恰有一个白球”与“恰有两个白球” |
B.“至少有一个白球”与“至少有—个蓝球” |
C.“至少有—个白球”与“都是蓝球” |
D.“至少有一个白球”与“都是白球” |
某校开设8门校本课程,其中4门课程为人文科学,4门为自然科学,学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等.
(1)求某同学至少选修1门自然科学课程的概率;
(2)已知某同学所选修的3门课程中有1门人文科学,2门自然科学,若该同学通过人文科学课程的概率都是
,自然科学课程的概率都是
,且各门课程通过与否相互独立.用
表示该同学所选的3门课程通过的门数,求随机变量
的概率分布列和数学期望.
(1)求某同学至少选修1门自然科学课程的概率;
(2)已知某同学所选修的3门课程中有1门人文科学,2门自然科学,若该同学通过人文科学课程的概率都是




(本题14分)张老师居住在某城镇的A处,准备开车到学校B处上班。若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图。(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为
,路段CD发生堵车事件的概率为
)。(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量
,求
的数学期望
。






