- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从装有质地、大小均相同的
个红球和
个白球的口袋内任取两个球,给出下列各对事件:①至少有
个白球;都是红球;②至少有
个白球;至少有
个红球;③恰好有
个白球;恰好有
个白球.其中,互斥事件的对数是 ( )







A.![]() | B.![]() | C.![]() | D.![]() |
在某超市收银台排队付款的人数及其频率如下表:
视频率为概率,则至少有2人排队付款的概率为__________.(用数字作答)
排队人数 | 0 | 1 | 2 | 3 | 4 | 4人以上 |
频率 | 0.1 | 0.15 | 0.15 | x | 0.25 | 0.15 |
视频率为概率,则至少有2人排队付款的概率为__________.(用数字作答)
经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:
则该营业窗口上午9点钟时,至少有2人排队的概率是 .
排队人数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
则该营业窗口上午9点钟时,至少有2人排队的概率是 .
设随机事件A、B的对立事件为
、
,且
,则下列说法错误的是( )
A.若A和B独立,则
和
也一定独立
B.若
,则
C.若A和B互斥,则必有
D.若A和B独立,则必有



A.若A和B独立,则


B.若


C.若A和B互斥,则必有

D.若A和B独立,则必有

(12分)某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘飞机去的概率;
(3)若他去的概率为0.5,请问他有可能是乘何种交通工具去的?
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘飞机去的概率;
(3)若他去的概率为0.5,请问他有可能是乘何种交通工具去的?
(12分)近期世界各国军事演习频繁,某国一次军事演习中,空军同时出动了甲、乙、丙三架不同型号的战斗机对一目标进行轰炸,已知甲击中目标的概率是
;甲、丙同时轰炸一次,目标未被击中的概率是
;乙、丙同时轰炸一次都击中目标的概率是
.
(Ⅰ)求乙、丙各自击中目标的概率.(Ⅱ)求目标被击中的概率.



(Ⅰ)求乙、丙各自击中目标的概率.(Ⅱ)求目标被击中的概率.
甲,乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()
A.![]() | B.![]() | C.![]() | D.![]() |
下列说法中正确的是( )
A.若事件A与事件B是互斥事件,则![]() |
B.若事件A与事件B满足条件:![]() |
C.一个人打靶时连续射击两次,则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件; |
D.把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件. |
下列说法正确的是( )
A.某厂一批产品的次品率为![]() |
B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨 |
C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈 |
D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5 |